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Don’t Forget the Differential Equation: Finishing 2005 BC4

by Steve Greenfield∗

August 19, 2006

Differential equations

Problem BC4 on the 2005 AP Calculus exam asked students to sketch a slope field and solution
curve for the differential equation y′ = 2x−y, investigate a critical point of this curve, compute the
approximate value of the solution using Euler’s method with two steps of equal size, and, finally,
compare the approximate value to the actual value. A request to compute y′′ was intended to
help students by suggesting concavity considerations. The last part of the problem also required
students to explain their reasoning about the comparison, and likely accounts for the unusually
small percent of perfect scores on this problem. I focus in this note on the last part of the problem
and begin with an analysis of a simpler but similar problem. Then the relevant sections of BC4 are
reviewed with comments.

A familiar graph

The very nice curve y = x2 shown in Figure 1 is always concave up.
We are assured further of this because y′′ = 2 > 0. This curve is also
the graph of a solution to an initial value problem for a differential

equation:
{

y′ = 2x

y(0) = 0
.

All solutions of the differential equation y′ = 2x are of the form
f(x) = x2 + C for various values of the constant, C. These are vertical
translations, up and down, of the original parabola.

Figure 1
Euler steps

An Euler step of length ∆x for the initial value problem
{

y′ = g(x, y)
y(x0) = y0

replaces (x0, y0) by (x0 +

∆x, y0 + g(x0, y0)∆x). This is a tangent line approximation to y(x0 + ∆x). Using several steps

of Euler’s method to approximate the solution of
{

y′ = 2x

y(0) = 0
means repeatedly using tangent line

approximations to f(x) = x2 + C for various values of C. Since all of these curves are concave
∗Stephen J. Greenfield teaches at Rutgers University in New Brunswick, New Jersey. He was the Question Leader

for problem 4 of the 2005 BC exam. His e-mail address is greenfie@math.rutgers.edu. The pictures here (except

for those cited as created with Maple) were drawn with the free program xfig.



up, the tangent line approximations will all be below the true value. Let’s investigate this in more
detail with several examples using different step sizes.

We start at
(

2
3 , 4

9

)
on the curve y = x2 and do an Euler step with

∆x = 1. The differential equation is y′ = 2x so we will move from(
2
3 , 4

9

)
to

(
2
3 + 1, 4

9 + 2
(

2
3

)
1
)
. This point is

(
5
3 , 16

9

)
. This is certainly

under the graph of y = x2 because a tangent line to a concave up curve
is below the curve. Notice that 16

9 ≈ 1.778 <
(

5
3

)2 ≈ 2.778.
Let’s compute another Euler step with ∆x = 1

2 . We use the slope
at the point

(
5
3 , 16

9

)
. If we find a solution to y′ = 2x which passes

through
(

5
3 , 16

9

)
, the direction along the line tangent to that solution

curve at
(

5
3 , 16

9

)
is the direction of the next Euler step. The solution

curve passing through
(

5
3 , 16

9

)
is y = x2−1. Now y = x2 and y = x2−1

are both solution curves to y′ = 2x. Solution curves can’t cross (see
Appendix I), so if one of these curves is below the other at Figure 2
any one value of x, it must be below in all of its domain. But the tangent line approximation to
y = x2−1 is below y = x2−1 since that curve is also concave up. Therefore (without computation!)
the second Euler step’s approximation must be below the true value on the first curve. Let’s check.
We must use the new slope, 2

(
5
3

)
= 10

3 and step size 1
2 applied to the point

(
5
3 , 16

9

)
. The result is(

5
3 + 1

2 , 16
9 +

(
10
3

) (
1
2

))
. This is

(
13
6 , 31

9

)
≈ (2.167, 3.444). And

(
13
6

)2 ≈ 4.694 which is considerably
larger than 3.444.

Figure 2 shows an attempt to draw the graphs accurately. The two line segments illustrate our
Euler steps of length 1 and 1

2 . The line segment corresponding to the second Euler step obscures
much of the (rather flat) curve y = x2 − 1 for x between 5

3 and 13
6 .

Other differential equations

Our original curve, y = x2, is a solution curve to many other differential equations. For example,
y = x2 solves y′ = 2x + arctan(y − x2) because arctan(0) = 0 and y = x2 implies that y − x2 is
always 0. Let’s look at a differential equation that is less complicated.

Consider y′ = 2x + 10(y− x2). This is not as easy to solve as our original differential equation,
but explicit solutions can be found. We may use a trick (finding an integrating factor; please see
Appendix II) to discover all of the exact solutions. These solutions are f(x) = x2 + Ce10x. Just as
in the previous case, the constant, C, specifies an initial condition at 0: f(0) = C. When C = 0
we get the familiar parabola y = x2 again.

Let’s examine Euler’s method applied to the solution of
{

y′ = 2x + 10(y − x2)
y(0) = 0

and step back-

wards from 0 with ∆x = −1
2 . The solution curve is y = x2 and the slope of this curve at (0, 0) is 0.

Our Euler step replaces (0, 0) with
(
−1

2 , 0
)
. Let’s use another ∆x step of −1

2 . The slope we need to

use is 2x + 10(y − x2) when x = −1
2 and y = 0. This slope is −1 + 10

(
−

(
−1

2

)2) = −7
2 . Therefore

we go from
(
−1

2 , 0
)

to
(
−1

2 −
1
2 , 0 +

(
−7

2

) (
−1

2

))
which is the point

(
−1, 7

4

)
. This point is above

y = x2 because 7
4 > 1 = (−1)2, so that two steps of Euler’s method now gives us something which

is greater than the true value of the solution.
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Figure 3 Figure 4 Figure 5

This may seem complicated and perhaps not intuitive. Above are some graphs created by Maple.
Figure 3 shows y = x2 for −6 ≤ x ≤ .1. Figure 4 shows the solution curve y = x2 + Qe10x where
Q = −1

4e5 ≈ −37.103, again for −6 ≤ x ≤ .1. This solution curve also satisfies y′ = 2x+10(y−x2)
and passes through the point

(
−1

2 , 0
)
. Figure 5 shows both curves for −.65 ≤ x ≤ −.25. Notice that

the three “windows” are all very different (even though Figures 3 and 4 have the same horizontal
“size”, y goes from 0 to 36 in Figure 3 and from −100 to 36 in Figure 4).

Some geometry: the changing shape of solution curves

The solution curve y = x2 + Qe10x with the value of Q specified above
has second derivative 2 + 100Qe10x. The second derivative changes sign at
x = 1

10 ln
(
− 1

50Q

)
= 1

10 ln
(

2
25e5

)
≈ −.753 and therefore the solution curve

has an inflection point at (approximately!) (−.753, .546).
The first Euler step moves horizontally to the left. The second Euler

step is tangent to the lower solution curve in the region where that solu-
tion curve is concave down. The tangent line is therefore above the lower
solution curve, and the slope of the tangent line is also sufficiently negative
so that an Euler step with ∆x = −1

2 ends above y = x2.
Figure 6 shows the two curves together with line segments to display

the two Euler steps calculated.
Figure 6

Even for y = x2 . . .

You can’t forget the differential equation. The solution curves for the two initial value problems{
y′ = 2x

y(0) = 0

{
y′ = 2x + 10(y − x2)

y(0) = 0

are the same: y = x2. For the first problem, two Euler steps with ∆x = −1
2 starting at (0, 0) give

an approximate value of 1
2 , less than the true value of the solution, which is 1. For the second

problem, two Euler steps with ∆x = −1
2 starting at (0, 0) give an approximate value of 7

4 , more
than the true value of the solution, which is 1.
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And now for the last point on 2005 BC4

BC4 asked about the solution to
{

y′ = 2x− y

y(0) = 1
. The problem

first requested that students draw a slope field at a dozen
points, and then students were asked to sketch the solution
curve through (0, 1). Figure 7 shows a correct answer.

BC4 did not ask for an exact solution, which can be found.
It is f(x) = 2x−2+3e−x. Certainly some students discovered
this formula, but the time and energy needed almost surely
reduced their success in the problem! Figure 7

Part (c) of BC4 requested that the student apply two Euler steps with ∆x = −.2 and report
the resulting approximate value of f(−.4). This approximation is 1.52, and it is less than the exact
value, which is about 1.657.

Part (d) first asked students to find y′′ in terms of x and y. A mild use of the Chain Rule has
y′ = 2x − y yield y′′ = 2 − y′ = 2 − (2x − y) = 2 − 2x + y. The second point would be earned
for part (d) if students could explain why the approximation found in (c) was indeed less than the
true value of f(−.4). The first Euler step is to the left because ∆x = −.2 is negative. The step’s
end must be under the original solution curve y = f(x)
because that curve is concave up (see below for information
about the sign of y′′). Another Euler step will need information
that can’t be gotten from the original solution curve. That
information comes from the slope of an unknown solution curve
which passes through the point at the end of the first Euler
step, somewhere in the region indicated in Figure 8. If we
knew that this curve was always concave up in that region, we
then could conclude that its tangent line was underneath, and
therefore the second step’s approximation would be less than
the true value. Figure 8

The second derivative of any solution curve of the differential equation y′ = 2x − y is positive
in the region indicated. There we know that y is positive and x is negative because the region is
part of the second quadrant. So y′′ = 2−2x+y > 0 there. The concave up behavior of the original
solution curve and the unknown solution curve is guaranteed where we need it.

4



If we did not know enough about the shape of the lower solution
curve, we could not decide whether the approximation was larger or
smaller than the true value of f(−.4). Figure 9 is a close-up view of
several hypothetical solution curves. The original curve through (0, 1)
is certainly concave up in this window. The first Euler step sits nicely
below it. The lower solution curve is actually concave up for x’s near
−.2 ≤ x ≤ 0 and for x’s near −.4. The lower solution curve is concave
down for x’s near the interval −.35 ≤ x ≤ −.25. This concave down
bump displayed allows the second Euler step to finish above y = f(x)
when x = −.4. To be sure that the second Euler step ends below
f(−.4) we must know that solution curves are concave up in an entire
region containing −.4 ≤ x ≤ 0.

So the second Euler step may be above f(−.4) if we allow the
solution curves to change their shapes. I think that this phenomenon
is very subtle.

Figure 9
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Appendix I: Solutions of differential equations

Here is one version of a wonderful theorem which solves (?) all of your problems involving differential
equations:

Suppose that f(x, y) is a differentiable function of x and
y and (x0, y0) is in the domain of f(x, y). The initial value

problem
{

y′ = f(x, y)
y(x0) = y0

has exactly one solution whose do-

main is an open interval containing x0. If x is any number
in the solution’s domain and y is the corresponding value
of the solution, f(x, y) must be defined.

This result doesn’t help very much with examples.

• The theorem declares there is a solution, but the solution may not be recognizable in terms of

standard functions. The initial value problem
{

y′ = ex2

y(0) = 0
has the solution y(x) =

∫ x
0 et2 dt with no

real simplifications possible. And I don’t know any simple way, even using integrals, to write the

solution to the initial value problem
{

y′ = 2x + arctan(y − x2)
y(0) = 1

which must exist according to the

theorem.

• The theorem doesn’t guarantee that the solution will live very long. Take f(x, y) = xy2, a very
nice polynomial, defined and differentiable for all (x, y)’s. The differential equation y′ = xy2 is
separable, and has solutions y = 2

C−x2 for C 6= 0. The initial condition this satisfies is x0 = 0
and y0 = 2

C . The solution through (0, 0) is the entire x-axis. For positive C, the domain of the
solution curve is only −

√
C < x <

√
C, and as C → 0+ (so the initial condition in y goes to +∞),

this domain shrinks to a point. Specifically, the initial value problem
{

y′ = xy2

y(0) = 200
has solution

y(x) = 2
1

100
−x2 , whose domain is only − 1

10 < x < 1
10 . This tiny domain is not evident when

examining xy2.

• There is one nice consequence. Because the initial value problems con-
sidered here have exactly one solution, distinct solution curves can’t cross.
If the curves did cross, then they would both satisfy the same differential
equation and the same initial value condition at the crossing point. The
theorem declares (“exactly one”) that the curves must be identical, a con-
tradiction. So if two distinct solution curves are both defined on the same
interval
with different initial conditions, the curve “on top” must stay on top because otherwise (the Inter-
mediate Value Theorem!) the curves would intersect and would have to be identical.

This pretty picture comes with a warning, though. Distinct solution curves to higher order
differential equations may indeed cross. Students may encounter second order differential equations
coming from velocity/acceleration problems with solution curves that cross. For example, y = x

and y = 2x are both solutions of
{

y′′ = 0
y(0) = 0

. The geometry of solution curves to higher order

differential equations is more complicated.
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Appendix II: Integrating factors

Two of the differential equations discussed here are y′ = 2x + 10(y− x2) and y′ = 2x− y. Both are
examples of first-order linear differential equations and both can be solved in terms of standard
functions by using an integrating factor.

Suppose we want to solve the differential equation y′ = A(x)y + B(x). Rearrange it as
y′ − A(x)y = B(x). Now let’s guess an antiderivative of −A(x). That is, suppose we know a
function C(x) so that C ′(x) = −A(x). Then multiply the rearranged equation by eC(x) to get
eC(x)y′ − A(x)eC(x)y = eC(x)B(x). The left-hand side of this equation is now exactly a derivative:
d
dx

(
eC(x)y

)
= eC(x)y′ + eC(x)C ′(x)y = eC(x)y′−A(x)eC(x)y. So we can (try to) antidifferentiate the

whole equation.
Describing this method abstractly doesn’t help me very much. I hope some examples will help.

Let’s look at the two equations mentioned earlier.

How to solve y′ = 2x− y

The differential equation y′ = 2x − y becomes y′ + y = 2x. Here −A(x) is 1 and C(x) is x so
we multiply by ex and get exy′ + exy = 2xex. The left-hand side is the derivative of exy and the
right-hand side is the derivative of 2xex − 2ex (integrate by parts). For the general solution, add
a constant to the right-hand side, and get exy = 2xex − 2ex + C. Thus y = 2x − 2 + Ce−x is the
general solution to y′ = 2x − y. If we want the solution to go through the point (0, 1), substitute
x = 0 and y = 1 to learn that C must be 3.

How to solve y′ = 2x + 10(y − x2)

The differential equation y′ = 2x+10(y−x2) becomes y′−10y = 2x−10x2. Now −A(x) is −10 and
C(x) is −10x so here we multiply by e−10x. The result is e−10xy′−10e−10xy = (2x−10x2)e−10x. We
did this so that the left-hand side would be a derivative of something, and that something is e−10xy.
Now we must antidifferentiate (2x−10x2)e−10x. We’re lucky because this is the derivative of x2e−10x

and I don’t need to struggle with two integrations by parts. Therefore e−10xy = x2e−10x + C so
that y = x2 + Ce10x as was stated earlier.

But be careful!

Some calculus books include examples resembling the two shown above, usually after material on
Newton’s law of cooling. But the integrating factor technique rarely succeeds in finding solutions
involving standard functions for more complicated equations. The differential equation y′ = 7−2xy

looks as simple as the two earlier examples. The needed integrating factor is an antiderivative of
ex2

. Again, this can’t be expressed in terms of standard elementary functions.
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