ADVANCED PLACEMENT PHYSICS ELECTRICITY AND MAGNETISM TABLE OF INFORMATION

CONSTANTS A	ND CONVERSION FACTORS	UNIT SYME	BOLS
Coulomb constant	$h = \frac{1}{100 \times 10^9} \text{ N} \cdot \text{m}^2$	ampere,	А
Coulomb constant,	$k = \frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 \frac{\mathrm{N} \cdot \mathrm{m}^2}{\mathrm{C}^2}$	coulomb,	С
Vacuum permittivity,	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	electron volt,	eV
vacuum permittivity,	$\varepsilon_0 = 0.03 \times 10$ C/(N·m)	farad,	F
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} \ (T \cdot m)/A$	henry,	Н
Proton mass,	$m_p = 1.67 \times 10^{-27} \text{ kg}$	hertz,	Hz
Neutron mass,	r r	joule,	J
	$m_n = 1.67 \times 10^{-27} \text{ kg}$	kilogram,	kg
Electron mass,	$m_e = 9.11 \times 10^{-31} \text{ kg}$	meter,	m
Elementary charge,	$e = 1.60 \times 10^{-19}$ C	newton,	N
1 electron volt,	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	ohm,	Ω
Speed of light,	$c = 3.00 \times 10^8 \text{ m/s}$	second,	S
	,	tesla,	Т
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$	volt,	V
Universal gravitational constant, G =	watt,	W	
Magnitude of the acceleration due to			
Magnitude of the gravitational field s	trength at Earth's surface, $g = 9.8 \text{ N/kg}$		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	Т		
10 ⁹	giga	G		
10^{6}	mega	M		
10 ³	kilo	k		
10 ⁻²	centi	c		
10 ⁻³	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10 ⁻¹²	pico	р		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0° 30° 37° 45° 53° 60° 90°					90°	
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- The electric potential is zero at an infinite distance from an isolated point charge.
- The direction of current is the direction in which positive charges would drift.
- All batteries, wires, and meters are assumed to be ideal unless otherwise stated.

	ELECTRICITY AN	D MAGNETISM	
$\begin{aligned} \left \vec{F}_{E} \right &= \frac{1}{4\pi\varepsilon_{0}} \frac{\left q_{1}q_{2} \right }{r^{2}} = k \frac{\left q_{1}q_{2} \right }{r^{2}} \\ \vec{E} &= \frac{\vec{F}_{E}}{q} \\ \vec{E} &= \frac{1}{4\pi\varepsilon_{0}} \int \frac{dq}{r^{2}} \hat{r} \\ \Phi_{E} &= \int \vec{E} \cdot d\vec{A} \\ \oint \vec{E} \cdot d\vec{A} &= \frac{q_{\text{enc}}}{\varepsilon_{0}} \\ Q_{\text{total}} &= \int \rho(r) dV \\ U_{E} &= \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1}q_{2}}{r} \\ V &= \frac{1}{4\pi\varepsilon_{0}} \int \frac{dq}{r} \\ \Delta V &= -\int_{a}^{b} \vec{E} \cdot d\vec{r} \\ E_{x} &= -\frac{dV}{dx} \\ \Delta U_{E} &= q\Delta V \\ C &= \frac{Q}{\Delta V} \\ C &= \frac{Q}{\Delta V} \\ C &= \frac{\kappa\varepsilon_{0}A}{d} \\ U_{C} &= \frac{1}{2}Q\Delta V \\ \kappa &= \frac{\varepsilon}{\varepsilon_{0}} \\ I &= \frac{dq}{dt} \\ I &= \int \vec{J} \cdot d\vec{A} \\ \vec{E} &= \rho \vec{J} \\ R &= \frac{\rho \ell}{A} \\ I &= \frac{\Delta V}{R} \\ P &= I\Delta V \end{aligned}$	$A = \text{area}$ $C = \text{capacitance}$ $d = \text{distance}$ $E = \text{electric field}$ $F = \text{force}$ $I = \text{current}$ $J = \text{current density}$ $\ell = \text{length}$ $P = \text{power}$ $q = \text{charge}$ $Q = \text{charge}$ $Q = \text{charge}$ $r = \text{radius, distance, or}$ $position$ $R = \text{resistance}$ $t = \text{time}$ $U = \text{potential energy}$ $V = \text{electric potential or}$ $volume$ $\mathcal{E} = \text{electric permittivity}$ $\rho = \text{resistivity or charge}$ $density$ $\mathcal{K} = \text{dielectric constant}$ $\Phi = \text{flux}$	$R_{eq,s} = \sum_{i} R_{i}$ $\frac{1}{R_{eq,p}} = \sum_{i} \frac{1}{R_{i}}$ $\frac{1}{C_{eq,s}} = \sum_{i} \frac{1}{C_{i}}$ $C_{eq,p} = \sum_{i} C_{i}$ $\tau = R_{eq} C_{eq}$ $\oint \vec{B} \cdot d\vec{A} = 0$ $\vec{F}_{B} = q (\vec{v} \times \vec{B})$ $d\vec{B} = \frac{\mu_{0}}{4\pi} \frac{I(d\vec{\ell} \times \hat{r})}{r^{2}}$ $\vec{F}_{B} = \int I(d\vec{\ell} \times \vec{B})$ $\oint \vec{B} \cdot d\vec{\ell} = \mu_{0} I_{enc}$ $B_{sol} = \mu_{0} nI$ $\Phi_{B} = \int \vec{B} \cdot d\vec{A}$ $\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_{B}}{dt}$ $ \mathcal{E}_{sol} = N \left \frac{d\Phi_{B}}{dt} \right $ $L_{sol} = \frac{\mu_{core} N^{2} A}{\ell}$ $U_{L} = \frac{1}{2} LI^{2}$ $\mathcal{E} = -L \frac{dI}{dt}$ $\tau = \frac{L}{R_{eq}}$ $\omega_{LC} = \frac{1}{\sqrt{LC}}$	A = area B = magnetic field C = capacitance F = force I = current $\ell = \text{length}$ L = inductance n = number of loops q = charge r = radius, distance, or position R = resistance t = time U = potential energy v = velocity or speed $\mathcal{E} = \text{emf}$ $\mu = \text{magnetic}$ permeability $\tau = \text{time constant}$ $\Phi = \text{flux}$ $\omega = \text{angular frequency}$

	MECHAN	NICS	
$\begin{aligned} \overline{v_x = v_{x0} + a_x t} \\ x = x_0 + v_{x0} t + \frac{1}{2} a_x t^2 \\ v_x^2 = v_{x0}^2 + 2a_x (x - x_0) \\ \Delta x = \int v_x (t) dt \\ \Delta v_x = \int a_x (t) dt \\ \vec{x}_{cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i} \\ \vec{r}_{cm} = \frac{\int \vec{r} dm}{\int dm} \\ \lambda = \frac{d}{d\ell} m(\ell) \\ \vec{a}_{sys} = \frac{\sum \vec{F}}{m_{sys}} = \frac{\vec{F}_{net}}{m_{sys}} \\ \left \vec{F}_g \right = G \frac{m_1 m_2}{r^2} \\ \left \vec{F}_f \right \le \left \mu \vec{F}_N \right \\ \vec{F}_s = -k \Delta \vec{x} \\ a_c = \frac{v^2}{r} = r \omega^2 \\ T = \frac{1}{f} \\ K = \frac{1}{2} m v^2 \\ W = \int_a^b \vec{F} \cdot d\vec{r} \\ \Delta K = \sum W_i = \sum F_{\parallel,i} d_i \end{aligned}$	$a = \operatorname{acceleration} $ $E = \operatorname{energy} $ $f = \operatorname{frequency} $ $F = \operatorname{force} $ $h = \operatorname{height} $ $J = \operatorname{impulse} $ $k = \operatorname{spring} \operatorname{constant} $ $K = \operatorname{kinetic} \operatorname{energy} $ $\ell = \operatorname{length} $ $m = \operatorname{mass} $ $M = \operatorname{mass} $ $P = \operatorname{power} $ $r = \operatorname{radius}, \operatorname{distance}, \operatorname{or position} $ $t = \operatorname{time} $ $T = \operatorname{period} $ $U = \operatorname{potential} \operatorname{energy} $ $v = \operatorname{velocity} \operatorname{or speed} $ $W = \operatorname{work} $ $x = \operatorname{position} \operatorname{or distance} $ $y = \operatorname{height} $ $\lambda = \operatorname{linear} \operatorname{mass} \operatorname{density} $ $\mu = \operatorname{coefficient} \operatorname{of friction} $ $P_{avg} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t} $	$\begin{split} \omega &= \frac{d\theta}{dt} \\ \alpha &= \frac{d\omega}{dt} \\ \omega &= \omega_0 + \alpha t \\ \theta &= \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \\ \omega^2 &= \omega_0^2 + 2\alpha \left(\theta - \theta_0\right) \\ v &= r \omega \\ a_T &= r \alpha \\ \vec{\tau} &= \vec{r} \times \vec{F} \\ I_{\text{tot}} &= \sum I_i = \sum m_i r_i^2 \\ I &= \int r^2 dm \\ I' &= I_{\text{cm}} + M d^2 \\ \alpha_{\text{sys}} &= \frac{\sum \tau}{I_{\text{sys}}} = \frac{\tau_{\text{net}}}{I_{\text{sys}}} \\ K_{\text{rot}} &= \frac{1}{2} I \omega^2 \\ W &= \int \tau \cdot d\theta \\ \vec{L} &= \vec{r} \times \vec{p} = I \vec{\omega} \\ \Delta L &= \int \tau dt \\ \Delta x_{\text{cm}} &= r \Delta \theta \\ T &= \frac{2\pi}{\omega} = \frac{1}{f} \\ T_s &= 2\pi \sqrt{\frac{m}{k}} \end{split}$	$a = \operatorname{acceleration}$ $d = \operatorname{distance}$ $f = \operatorname{frequency}$ $F = \operatorname{force}$ $l = \operatorname{rotational inertia}$ $k = \operatorname{spring constant}$ $K = \operatorname{kinetic energy}$ $\ell = \operatorname{length}$ $L = \operatorname{angular momentum}$ $m = \operatorname{mass}$ $M = \operatorname{mass}$ $M = \operatorname{mass}$ $M = \operatorname{mass}$ $p = \operatorname{momentum}$ $r = \operatorname{radius}$, distance, or $p \operatorname{osition}$ $t = \operatorname{time}$ $T = \operatorname{period}$ $v = \operatorname{velocity}$ or speed $W = \operatorname{work}$ $x = \operatorname{position}$ or distance $\alpha = \operatorname{angular}$ acceleration $\theta = \operatorname{angle}$ $\tau = \operatorname{torque}$ $\phi = \operatorname{phase}$ angle $\omega = \operatorname{angular}$ frequencyor angular speed
$W = \int_{a}^{b} \vec{F} \cdot d\vec{r}$	$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ $P_{\text{inst}} = \frac{dW}{dt}$ $\vec{p} = m\vec{v}$ $\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}$ $\vec{J} = \int_{t_{i}}^{t_{2}} \vec{F}_{\text{net}}(t) dt = \Delta \vec{p}$ $\vec{v}_{\text{cm}} = \frac{\sum \vec{p}_{i}}{\sum m_{i}} = \frac{\sum m_{i}\vec{v}_{i}}{\sum m_{i}}$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$ $T_{\rm s} = 2\pi \sqrt{\frac{m}{k}}$ $T_{\rm p} = 2\pi \sqrt{\frac{\ell}{g}}$ $T_{\rm phys} = 2\pi \sqrt{\frac{1}{mgd}}$ $x = x_{\rm max} \cos(\omega t + \phi)$	

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base C = circumference	$a^2 + b^2 = c^2$
Triangle	Cylinder	s \	h = height	$\sin\theta = \frac{a}{c}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$	$\int \frac{\partial}{\partial r} r$	$\ell = \text{length}$ r = radius	$\cos\theta = \frac{b}{b}$
2	$S = 2\pi r\ell + 2\pi r^2$		s = arc length	$\cos \theta = -\frac{1}{c}$
Circle	Sphere		S = surface area V = volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$	·	w = width	c a
$C = 2\pi r$	-		θ = angle	θ 90°
$s = r\theta$	$S = 4\pi r^2$			b

VECTORS	CALCULUS	IDENTITIES
$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$ $\left \overrightarrow{A} \times \overrightarrow{B} \right = AB \sin \theta$ $\overrightarrow{r} = \left(A\hat{i} + B\hat{j} + C\hat{k} \right)$ $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$ $\overrightarrow{C} = \left(A_x + B_x \right) \hat{i} + \left(A_y + B_y \right) \hat{j}$	CALCULUS $\frac{df}{dx} = \frac{df}{du} \frac{du}{dx}$ $\frac{d}{dx} (x^{n}) = nx^{n-1}$ $\frac{d}{dx} (e^{ax}) = ae^{ax}$ $\frac{d}{dx} (\ln ax) = \frac{1}{x}$ $\frac{d}{dx} [\sin(ax)] = a\cos(ax)$ $\frac{d}{dx} [\cos(ax)] = -a\sin(ax)$ $\int x^{n} dx = \frac{1}{n+1}x^{n+1}, n \neq -1$	IDENTITIES $log(a \cdot b^{x}) = log a + x log b$ $sin^{2} \theta + cos^{2} \theta = 1$ $sin(2\theta) = 2 sin \theta cos \theta$ $\frac{sin \theta}{cos \theta} = tan \theta$
	$\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int \frac{dx}{x+a} = \ln x+a $ $\int \cos(ax) dx = \frac{1}{a} \sin(ax)$ $\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$	