AP® CHEMISTRY EQUATIONS AND CONSTANTS

UNIT SYMBOLS UNIT CON		VERSIONS METRIC PREFIXES			
gram, g		$1 \text{ hertz} = 1 \text{ s}^{-1}$		Prefix	Symbol
mole, mol	1 hertz = 1 s ⁻¹			giga	G
liter, L				8'8"	
meter, m	1 atm = 760 mm	1 atm = 760 mm Hg = 760 torr		mega	M
second, s	_			kilo	k
hertz, Hz	$K = ^{\circ}C + 273.15$	K = °C + 273.15			
atmosphere, atm millimeter of mercury, mm H		1 1		centi	с
degree Celsius, °C	$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulor}}$	$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$		milli	m
kelvin, K				micro	μ
joule, J	1 ampere = $\frac{100}{1 \text{ se}}$	1 ampere = $\frac{1 \text{ coulomb}}{1 \text{ second}}$			μ
volt, V				nano	n
coulomb, C	_			pico	p
ampere, A			10 ⁻¹²	-	
ATOMIC STRUCTURE	E = energy				
E = hv		v = frequency			
$c = \lambda v$		$\lambda =$ wavelength			
$C = \lambda V$			F =	= force	
$F_{coulombic} \propto \frac{q_1 q_2}{r^2}$		q = charge			
r^2				= separation	
		Planck's	constant, h =	$= 6.626 \times 10^{-1}$	⁻³⁴ J s
	Speed of light, $c = 2.998 \times 10^8 \text{ m s}^{-1}$				
		Avogadı	o's number =	$= 6.022 \times 10^{2}$	$^{23} \text{ mol}^{-1}$
GASES, LIQUIDS, AND SOL	P = pressure				
$P_1V_1 - P_2V_2$	V = volume				
$\frac{-1}{T_1} = \frac{-2}{T_2}$	T = temperature				
PV = nRT	n = number of moles X = mole fraction				
			$m = \max$		
$P_A = P_{\text{total}} \times X_A$, where $X_A = \frac{\text{moles } A}{\text{total moles}}$		M = mass M = molar mass			
		D = density			
$P_{\text{total}} = P_{\text{A}} + P_{\text{B}} + P_{\text{C}} + \dots$			KE = kine	tic energy	
$n - \frac{m}{2}$	v = velocity				
$n = \frac{m}{M}$	M = molarity				
D - m	A = absorbance				
$D = \frac{m}{V}$	ε = molar absorptivity				
$KE = \frac{1}{2}mv^2$	b = path length				
$KE = -\frac{mv^2}{2}$	c = concentration				
<i>n</i>	Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$				
$M = \frac{n_{solute}}{L_{solution}}$	$= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$				
	STP = 273.15 K and 1.0 atm				
$A = \varepsilon bc$		Ideal gas at	STP = 22.4	$L \text{ mol}^{-1}$	

KINETICS			
$[\mathbf{A}]_t - [\mathbf{A}]_0 = -kt$	k = rate constant		
$\ln[\mathbf{A}]_t - \ln[\mathbf{A}]_0 = -kt$	t = time		
i0	$t_{\frac{1}{2}}$ = half-life		
$\frac{1}{\left[\mathbf{A}\right]_{t}} - \frac{1}{\left[\mathbf{A}\right]_{0}} = kt$			
$t_{\frac{1}{2}} = \frac{0.693}{k}$			
EQUILIBRIUM			
$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$, where $a A + b B \rightleftharpoons c C + d D$	$\frac{Equilibrium Constants}{K_c}$ (molar concentrations)		
$K_{p} = \frac{(P_{\rm C})^{c}(P_{\rm D})^{d}}{(P_{\rm A})^{a}(P_{\rm B})^{b}}$	K_p (gas pressures) K_w (water)		
$K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$	K_{a} (acid)		
$pK_w = 14 = pH + pOH at 25^{\circ}C$	K_b (base)		
$pH = -\log[H_3O^+], \qquad pOH = -\log[OH^-]$			
$K_a = \frac{[H_3O^+][A^-]}{[HA]}, \qquad K_b = \frac{[OH^-][HB^+]}{[B]}$			
$\mathbf{p}K_a = -\log K_a, \qquad \mathbf{p}K_b = -\log K_b$			
$K_w = K_a \times K_b,$ $pK_w = pK_a + pK_b$			
$pH = pK_a + \log \frac{[A^-]}{[HA]}$			
THERMODYNAMICS/ELECTROCHEMISTRY	q = heat		
$q = mc\Delta T$	m = mass		
$\Delta H_{reaction}^{\circ} = \sum \Delta H_{f products}^{\circ} - \sum \Delta H_{f reactants}^{\circ}$	c = specific heat capacity		
$\Delta S_{reaction}^{\circ} = \sum S_{products}^{\circ} - \sum S_{reactants}^{\circ}$	T = temperature		
*	$S^{\circ} =$ standard entropy		
$\Delta G_{reaction}^{\circ} = \sum \Delta G_{f \ products}^{\circ} - \sum \Delta G_{f \ reactants}^{\circ}$	H° = standard enthalpy C° = standard Gibbs free energy		
	G° = standard Gibbs free energy R = gas constant		
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	K = gas constant K = equilibrium constant		
$= -RT \ln K$	n = number of moles of electrons		
$= -nFE^{\circ}$	$E^{\circ} = $ standard potential		
q	I = current (amperes)		
$I = \frac{q}{t}$	q = charge (coulombs)		
$E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln Q$	t = time (seconds)		
$L_{cell} - L_{cell} = \frac{1}{nF} m Q$	Q = reaction quotient		
	Faraday's constant, $F = 96,485$ coulombs / 1 mol e^-		