
AP Computer Science
Curriculum Module: An Introduction to Polymorphism in Java

Dan Umbarger
AP Computer Science Teacher
Dallas, Texas

© 2008 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the acorn logo
are registered trademarks of the College Board. connect to college success is a trademark owned by the College Board. Visit
the College Board on the Web: www.collegeboard.com

An Introduction to Polymorphism in Java

The term homonym means “a word the same as another in sound and spelling but with different meaning.” The
term bear could be a verb (to carry a burden) or it could be a noun (a large, hairy mammal). One can distinguish
between the two usages through the use of context clues. In computer science the term polymorphism means “a
method the same as another in spelling but with different behavior.” The computer differentiates between (or
among) methods depending on either the method signature (after compile) or the object reference (at run time).

In the example below polymorphism is demonstrated by the use of multiple add methods. The computer
differentiates among them by the method signatures (the list of parameters: their number, their types, and the order
of the types.)

// A Java program written to demonstrate compile-time
// polymorphism using overloaded methods

public class OverLoaded
{
 public static void main(String [] args)
 {
 DemoClass obj = new DemoClass();
 System.out.println(obj.add(2,5)); // int, int
 System.out.println(obj.add(2, 5, 9)); // int, int, int
 System.out.println(obj.add(3.14159, 10)); // double, int
 } // end main
}// end OverLoaded

public class DemoClass
{
 public int add(int x, int y)
 {
 return x + y;
 }// end add(int, int)

 public int add(int x, int y, int z)
 {
 return x + y + z;
 }// end add(int, int, int)

 public int add(double pi, int x)
 {
 return (int)pi + x;
 }// end add(double, int)
}// end DemoClass

This form of polymorphism is called early-binding (or compile-time) polymorphism because the computer
knows after the compile to the byte code which of the add methods it will execute. That is, after the compile
process when the code is now in byte-code form, the computer will “know” which of the add methods it will
execute. If there are two actual int parameters the computer will know to execute the add method with two formal
int parameters, and so on. Methods whose headings differ in the number and type of formal parameters are said to
be overloaded methods. The parameter list that differentiates one method from another is said to be the method
signature list.

There is another form of polymorphism called late-binding (or run-time) polymorphism because the computer
does not know at compile time which of the methods are to be executed. It will not know that until “run time.” Run-
time polymorphism is achieved through what are called overridden methods (while compile-time polymorphism is
achieved with overloaded methods). Run-time polymorphism comes in two different forms: run-time
polymorphism with abstract base classes and run-time polymorphism with interfaces. Sometimes run-time
polymorphism is referred to as dynamic binding.

Types of Run-Time Polymorphism

There are five categories or types of run-time polymorphism:

1. Polymorphic assignment statements
2. Polymorphic Parameter Passing
3. Polymorphic return types
4. Polymorphic (Generic) Array Types
5. Polymorphic exception handling (not in AP subset)

 2

1. Polymorphic Assignment Statements

When learning a new concept, it is often helpful to review other concepts that are similar and to use the
earlier, similar skill as a bridge or link to the new one. Look at the following declaration:

int x = 5;
double y = x; // results in y being assigned 5.0

This is an example of “type broadening.” The int x value of 5, being an int which is a subset of the set
of doubles, can be assigned as the value of the double y variable.

On the other hand,

 double x = 3.14;
 int y = x;

results in the compile error message “Possible loss of precision.” The JVM knows that it will
have to truncate the decimal part of 3.14 to do the assignment and is fearful to do so, thinking that you
have made a mistake. You can assure the JVM that you really do know what you are doing and really do
wish to effect that truncation by coding a “type cast.”

 double x = 3.14;

public class DownCast
{
 public static void main(String [] args)
 {
 int x = 5;
 double y = x;
 //int z = y; y = x = 5 right???
 int z = (int)y; // now it’s O.K.
 }// end main
}// end class

Possible loss of precision (compile error)

 int y = (int) x;

At right is some curious code to analyze.
The variable value y received from x was
originally an int value (5), but we are not
allowed to assign that value (5) to the int
variable z without a type cast on y. It
seems as though the “type broadening ”
from 5 to 5.0 has somehow changed the
nature of the value. This situation will be
helpful to remember in another few pages
when we discuss a concept called “down-
casting.”

Consider the following example. In the figures shown here boys and girls enter a gymnasium where they become
generic sports fans, but are not allowed to enter gender-specific restrooms without first being converted back (type
cast) to their specific gender types.

 boys

 girls

 Sports fans

 in a

gymnasium

 boys girls

 3

 boys’ girls’
 restroom restroom

We now move from discussing primitive variables
to object reference variables. The figure at the right objX Class A pictorially represents an “is-a” relation between two
classes. ClassB is an extension of ClassA. ObjY
is a type of ClassA, but objX is not a type of ClassB.
This relation is not symmetrical.
 objY Class B

public class PolymorphicAssignment
{
 public static void main(String [] args)
 {
 ClassA obj1 = new ClassA();
 ClassA obj2 = new ClassA();
 ClassB obj3 = new ClassB();

1) obj1 = obj2; // no problem here...same data types
2) obj1 = obj3; // obj3 is a type of ClassA…ok
3) //obj3 = obj2; // "incompatible types" compile message
4) //obj3 = obj1; // still incompatible as the obj3 value
 // stored in obj1 (see line 2 above)
 // has lost its ClassB identity
5) obj3 = (ClassB)obj1; // the ClassB identity of the object
 // referenced by obj1 has been retrieved!
 // This is called "downcasting"
6) obj3 = (ClassB)obj2; // This compiles but will not run.
 // ClassCastException run time error
 // Unlike obj1 the obj2 object ref. variable
 // never was a ClassB object to begin with

 } // end main
}// end class

public class ClassA
{

}// end ClassA

public class ClassB extends ClassA
{

}// end ClassB

In the code above, line 1 is a snap. Both object reference variables obj1 and obj2 are of ClassA() type. Life is
good. Line 2 works because obj3 is an object reference variable of type ClassB, and ClassB type variables are a
type of ClassA. Obj3 is a type of ClassA. Life is still good. Line 3 will not compile, as the code is attempting to
assign a ClassA variable value to a variable of ClassB type. That is analogous to trying to assign a double value
to an int variable. Line 4 is more complicated. We know from line 2 that obj1 actually does reference a ClassB
value. However, that ClassB information is now no longer accessible as it is stored in a ClassA object reference
variable. Line 5 restores the ClassB class identity before the assignment to ClassB object reference variable obj3
with a type cast. Life is good again. Line 6 is syntactically equivalent to line 5 and will actually compile because of
it, but will result in a “ClassCastException” at run time because obj2 never was ClassB data to begin with.

Exercise 1:

1. How is line 2 above conceptually similar to the discussion of “type broadening?” Use the term “is-a” in
your response.

2. What is wrong with the code in lines 3 and 4 above? Relate to the discussion on the previous page.
3. Why isn’t line 4 okay? From line 2 aren’t you assigning a ClassB value to a ClassB variable?
4. Lines 5 and 6 are syntactically equivalent. They both compile but line 6 will not execute. Why? Explain

the difference between those two lines.

 4

Code to Demonstrate Polymorphic Assignment

 5

import java.util.Random;

public class PolyAssign
{
 public static void main(String [] args)
 {
 Shape shp = null;

 Random r = new Random();
 int flip = r.nextInt(2);

 if (flip == 0)
 shp = new Triangle();
 else
 shp = new Rectangle();

 System.out.println("Area = " + shp.area(5,10));
 } // end main
}// end class

abstract class Shape
{
 public abstract double area(int,int);

} // end Shape

public class Triangle extends Shape
{
 public double area(int b, int h)
 {
 return 0.5 * b * h;
 }

}// end Triangle.

public class Rectangle extends Shape
{
 public double area(int b, int h)
 {
 return b * h;
 }
}// end Rectangle

Output is chosen at random: either
Area = 25 (area triangle) or Area = 50 (area rect)

Here we see run-time polymorphism at work! The JVM will not know the value of variable “shp” until run time, at
which time it selects the area() method associated with the current object assigned to “shp.” The “abstract”
specification on class Shape means that that class cannot be instantiated and only exists to indicate common
functionality for all extending subclasses. The “abstract” specification on the area method means that all
extending subclasses will have to provide implementation code (unless they also are abstract).

2. Polymorphic Parameter Passing

Early in the Java curriculum we encounter the syntax requirement that actual (sending) and formal (receiving)
parameters must match in number, type, and sequence of type. With polymorphism we can write code that appears
to (but does not actually) break this rule. As before, we use the idea of “type broadening” of primitives as a bridge
to understanding how polymorphism works with parameter passing of objects. If we write the code:

int actual = 5; and the method public void method(double formal)
method(actual); { implementation code }

the int actual parameter is “broadened” to a 5.0 and received by parameter formal.

Note that

double actual = 5.0; and the method public void method(int formal)
method(actual); { implementation code}

would result in a “type incompatibility” compile error message unless a type cast were made on the actual
(sending) parameter first: method((int) actual);

We now move from the discussion of type broadening of primitives to the idea of polymorphic parameter passing.
We create objects for each of the two classes shown at right here and proceed to show their objects being passed as
parameters to a method.

In line 1, at left, an object reference variable of ClassA type is
passed to method1 and received as a ClassA object reference
variable. Actual and formal parameter types are the same. Life
is good! Line 2 shows a ClassB object reference variable
passed to and received as a ClassA type variable. This is okay,
as a ClassB type variable “is-a” type of ClassA variable. Line
3 fails, as you are passing a superclass type variable to be
received as a subclass type. It seems as though line 5 should
work, as obj1 received the value of a ClassB variable, but it
doesn’t work unless the ClassB identity is restored through a
type cast as shown in line 6. Line 7 will compile, as it is
syntactically the same as line 6, but line 7 will result in a
“type cast exception” upon program execution.

Class B

public class ClassA
{

}// end ClassA

Class A

public class ClassB extends ClassA
{

}// end ClassB

public class PolymorphicParameterPassing
{
 public static void main(String [] args)
 {
 ClassA obj1 = new ClassA();
 ClassA obj2 = new ClassA();
 ClassB obj3 = new ClassB();

 1) method1(obj1);
 2) method1(obj3);
 3) //method2(obj1);
 4) obj1 = obj3;
 5) //method2(obj1);
 6) method2((ClassB) obj1);
 7) // method2((ClassB) obj2);
 } // end main

public static void method1(ClassA formal) {}

public static void method2(ClassB formal) {}

}// end class

 6

Code to Demonstrate Polymorphic Parameter Passing

import java.util.Random;
public class PolyParam
{
 public static void main(String [] args)
 {
 Shape shp;
 Shape tri = new Triangle();
 Shape rect = new Rectangle();
 Random r = new Random();
 int flip = r.nextInt(2);
 if (flip == 0)
 shp = tri;
 else
 shp = rect;

 printArea(shp); // output will vary
 } // end main

 public static void printArea(Shape s)
 {
 System.out.println("area = " + s.area(5, 10));
 }// end printArea()
} // end class

abstract class Shape
 {
 abstract double area(int a, int b);
 }// end Shape

public class Triangle extends Shape
{
 public double area(int x, int y)
 {
 return 0.5 * x * y;
 }

}// end Triangle

public class Rectangle extends Shape
{
 public double area(int x, int y)
 {
 return x * y;
 }
}// end Rectangle

Exercise 2: What is the output of this program? Why?

 7

3. Polymorphic Return Types

When returning values from return methods we know that there must be a type compatibility between the type of
the variable receiving the value and the value being returned. For example:

 int x = retMethod(); and public int retMethod(){ return 5;}

We can code: double x = retMethod(); and public int retMethod(){ return 5;}

because the value being returned (5) is a type of double and, after the int 5 is “broadened” to a 5.0, that value
can be assigned to the double variable x.

The code int x = retMeth2(); with public double retMeth2() { return 5;}

results in a “type compatibility” error message (even though 5.0 was originally an integer value) unless we
type cast the double return value as:
 int x = (int) retMeth2();

Class B

Class A Again we move from discussion of type broadening
of primitives to the idea of polymorphic return
types. We create objects for each of the two classes
shown at right here and proceed to show their objects
being used in return methods.

public class PolymorphicReturnTypes
{
 public static void main(String [] args)
 {
 ClassA obj1 = new ClassA();
 ClassA obj2 = new ClassA();
 ClassB obj3 = new ClassB();

 1.) obj1 = method1();
 2.) obj1 = method2();
 3.) //obj3 = method1(); // incompatible types
 4.) //obj3 = method3(); // incompatible...why?
 5.) obj3 = (ClassB) method3();
 6.) //obj3 = (ClassB) method1();

 } // end main

 public static ClassA method1() { return new ClassA(); }

 public static ClassB method2() { return new ClassB(); }

 public static ClassA method3() { return new ClassB(); }

}// end class

public class ClassA
{

}// end ClassA

public class ClassB extends ClassA
{

}// end ClassB

 8

 9

Exercise 3:

1. Why does line 1 compile and execute?
2. Why does line 2 compile and execute?
3. Why does line 3 fail to compile and execute?
4. Why does line 4 fail to compile and execute? How is line 4 different from line 3?
5. Line 5 is similar to line 4. How does it succeed when line 4 fails to compile?
6. Line 6 is similar to line 5. Line 6 will compile but not execute. Why?

Code to Demonstrate Polymorphic Return Types

import java.util.Random;

public class PolyReturn
{
 public static void main(String [] args)
 {
 Shape shp = retMethod();
 System.out.println(shp.area(5, 10));
 } // end main

 public static Shape retMethod()
 {
 Random r = new Random();
 int flip = r.nextInt(2);
 if (flip == 0)
 return new Triangle();
 else
 return new Rectangle();
 }// end retMethod()
}// end class

abstract class Shape
{
 public abstract double area(int a, int b);
}// end Shape

class Triangle extends Shape
{
 public double area(int x, int y)
 {
 return 0.5 * x * y;
 }
}// end Triangle

class Rectangle extends Shape
{
 public double area(int x, int y)
 {
 return x * y;
 }
}// end Rectangle

Exercise 4: What is the output of the preceding code? Why?

 10

4. Polymorphic (Generic) Array Types

Arrays in Java, as with other languages, are homogeneous data types. This means that every array position
must have the same type, hence the same length.

int arr = new int[1000]; // every array position reserves space for 4 bytes (in Java)

The declaration above reserves 4000 (1000 * 4) bytes of contiguous memory—each 4 bytes of memory
storing an int value. Combining homogeneous position length together with contiguous memory is what
gives arrays their O(1) access. In the figure below, storage or retrieval of data in position x can be
determined by the formula “address of arr[x] = base + (x * 4).” Hence if the first item in the array is
located in memory position 3b4f then the xth position in the array would be 3b4f + (x * 4).

 … …
 0 1 2 … x … 999

 11

3b4f 3b4f + (x * 4)

With “one-based counting” the same addressing formula would be “address of data in array = base +
 (x – 1) * 4.” This is why computer scientists like “zero-based counting.” Thus contiguous memory arrays
allow us to use a single identifier for many, many different items of data while still having O(1) access.
We need only to observe the restriction that every position in the array reserves the same amount of
memory. If, instead of working with an array of primitives, we declare an array of objects, we can still
achieve O(1) access but also achieve the effect of a “virtual” heterogeneous array. This effect will require
some background to understand but is important as it is the “trick” behind polymorphic arrays.

The code example below is used to prepare the reader for the idea of polymorphic arrays.

<APPLET CODE="Poly1.class" WIDTH=900 HEIGHT = 600> </APPLET>

 12

The code in method paint
above is implemented by
the JVM by creating five object
reference variables, each
referencing an object as shown
in the figures below.

objRef0.draw(g);
objRef1.draw(g);
objRef2.draw(g); compile time
objRef3.draw(g); polymorphism
objRef4.draw(g);

Each respective draw() method here has a different
implementation which draws a different part of the face.

 objRef0 objRef1 objRef2 objRef3 objRef4

obj1
draw()

obj3
draw()

obj4
draw() obj0

draw()

obj2
draw()

public class Poly1 extends java.applet.Applet
{
 public void paint(Graphics g)
 {
 Head objRef0 = new Head();
 objRef0.draw(g);
 RightEye objRef1 = new RightEye();
 objRef1.draw(g);
 LeftEye objRef2 = new LeftEye();
 objRef2.draw(g);
 Nose objRef3 = new Nose();
 objRef3.draw(g);
 Mouth objRef4 = new Mouth();
 objRef4.draw(g);
 }// end paint
}// end class poly1

public class Head
{
 public void draw(Graphics g)

 { g.drawOval(75, 75, 400, 400); }

}// end class Head

public class RightEye
{
 public void draw(Graphics g)

 { g.drawOval(150, 200, 60, 40); }

}// end class RightEye

public class LeftEye
{
 public void draw(Graphics g)

 { g.drawOval(300, 200, 60, 40); }

}// end class LeftEye

public class Nose
{
 public void draw(Graphics g)

 { g.drawOval(250, 300, 30, 30); }

}// end class Nose

public class Mouth
{
 public void draw(Graphics g)

 { g.drawArc(175, 300, 200, 100, 180, 180); }

}// end class Mouth

What we wish to do is to rewrite the code above so that the effect will be as follows:

obj3
draw()

obj1
draw()

 13

 0 1 2 3 4

 If we could place all the object references inside an array, then the code

 could be replaced by

 Run-Time Polymorphism

Compile-Time Polymorphism

The benefit of this new code would increase as the number of desired draw methods increased. The
problem of achieving such code is the requirement that all contiguous memory arrays be typed—the same type—
so that each array position will be the same length. What type could we choose? We might try
Object refArray = new Object[5]. But then there would be the problem of “type casting” each object
back to its reference variable subclass type. Java 1.5 automatically unboxes for the ArrayList but only if a
common type can be specified when the ArrayList is declared: ArrayList <type> refArray = new
ArrayList<type>(); What could we use for <type> ? What we need is an abstract “place-keeper” type—sort
of like a variable in Algebra I, but representing an unknown type as opposed to an unknown value.

obj0
draw()

obj2
draw()

obj4
draw()

objRef0.draw(g);
objRef1.draw(g);
objRef2.draw(g);
objRef3.draw(g);
objRef4.draw(g);

for (int k = 0; k < 5; k++)
 refArray(k].draw(g);

abstract
class
BaseClass
draw();

class
Mouth
draw();

class
Nose
draw();

class
LeftEye
draw();

class
RightEye
draw();

class
Head
draw();

Classes Head, RightEye, LeftEye, Nose, and Mouth all extend from abstract class BaseClass. Therefore
each of those classes “is-a” type of BaseClass. Hence the code we are looking for to instantiate an array of
generic type would be:

 BaseClass [] refArray = new BaseClass[5];

Below is the code to draw the happy-face figure using a “polymorphic array” with an abstract base class type.

 class Head extends BaseClass

{
 public void draw(Graphics g)

 { g.drawOval(75, 75, 400, 400); }

}// end class Head

class RightEye extends BaseClass
{
 public void draw(Graphics g)

 { g.fillOval(150, 200, 60, 40); }

}// end class RightEye

class LeftEye extends BaseClass
{
 public void draw(Graphics g)

 { g.drawOval(300, 200, 60, 40); }

}// end class LeftEye

import java.awt.*;

public class PolyArray extends java.applet.Applet
{
 public void paint(Graphics g)
 {
 BaseClass [] refArray = new BaseClass[5];

 refArray[0] = new Head();
 refArray[1] = new LeftEye();
 refArray[2] = new RightEye();
 refArray[3] = new Nose();
 refArray[4] = new Mouth();

 for (BaseClass e: refArray)
 e.draw(g);

 }// end paint
}// end class PolyArray

abstract class BaseClass
{
 abstract void draw(Graphics g);
}

class Nose extends BaseClass class Mouth extends BaseClass
{ {
 public void draw(Graphics g) public void draw(Graphics g)

 { g.drawOval(250, 300, 30, 30); } { g.drawArc(175, 300, 200, 100, 180, 180); }

}// end class Nose } // end class Mouth

 14

Exercise 5: Using a polymorphic array and abstract base class, draw the house below.

 15

There is another way to effect a polymorphic array, through a technique known as using a generic interface (base
class). An interface (base class) is similar to an abstract base class but with differences. The table below compares
an abstract base class with an interface base class. They both can serve as “generic” types.

 Abstract Base Class Interface (abstract by default)

1) Abstract may be specified but is default abstract 1) Must be specified as abstract. Classes are
 regardless. Does not implement code! concrete by default.
2) Can only have constants, no variables. 2) Can have both variables and constants
3) Can only have abstract methods. Interface 3) Usually has a mix of concrete and abstract
 methods may be specified as abstract but are methods.

4) Subclasses extend abstract base classes. default abstract regardless.
4) Subclasses implement an interface (base class). 5) Subclasses can only extend 1 abstract base class.
5) Subclasses can implement more than 1 interface. 6) Methods can be private, public, or protected.
6) All methods (actually method headings) are public.

Below is the code to draw the happy-face figure using a “polymorphic array” with an abstract interface class type.

import java.awt.*;

public class PolyArray extends java.applet.Applet
{
 public void paint(Graphics g)
 {
 BaseInterface [] refArray = new BaseInterface[5];

 refArray[0] = new DrawHead();
 refArray[1] = new DrawLeftEye();
 refArray[2] = new DrawRightEye();
 refArray[3] = new DrawNose();
 refArray[4] = new DrawMouth();

 for (BaseInterface e: refArray)
 e.draw(g);

 }// end paint
}// end class poly1

interface BaseInterface
{
 /* abstract */ void draw(Graphics g);
}

public class Head implements BaseInterface
{
 public void draw(Graphics g)

 { g.drawOval(75, 75, 400, 400); }

}// end class DrawHead

public class RightEye implements BaseInterface
{
 public void draw(Graphics g)

 { g.fillOval(150, 200, 60, 40); }

}// end class RightEye

public class LeftEye implements BaseInterface
{
 public void draw(Graphics g)

 { g.drawOval(300, 200, 60, 40); }

}// end class LeftEye

 16

public class Nose implements BaseInterface public class Mouth implements BaseInterface
{ {
 public void draw(Graphics g) public void draw(Graphics g)

 { g.drawOval(250, 300, 30, 30); } { g.drawArc(175, 300, 200, 100, 180, 180); }

}// end class Nose } // end class Mouth

5. Polymorphic Exception Handling (Optional, not in AP subset.)

To catch only the large fish in the figure below we would use the net with the large mesh, which would
allow the two other smaller fish to swim right through the net. Then, to catch the middle-sized fish, we
would use the net with middle-sized mesh, allowing the smaller fish to swim through the net. On the other
hand, if we used the net with the smallest mesh on our first cast we would catch all three fish at once.
Catching exceptions with try-catch blocks is similar to catching fish of different sizes, due to the
polymorphic relation of the exception classes.

In the API segment below, you can see that the bottom class in the extended inheritance relation indicated
is the “ArrayIndexOutOfBoundsException.” Catching an exception with a
“ArrayIndexOutOfBoundsException” object is analogous to catching the fish with the large mesh. It
can only catch the largest fish. Due to polymorphism, the higher up one goes in the chain of inheritance
the more errors can be caught (analogous to using a finer-mesh fishnet). The ability to catch errors
selectively allows for different sections of recovery code targeted at specific error situations.

 17

// catches "big fish", then "middle fish", then "little fish"
/*
catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("ArrayIndex OutOfBoundsException");
 }// end catch ArrayIndexOutOfBoundsException

catch(IndexOutOfBoundsException e){
 System.out.println("IndexOutOfBoundsException");
 } // end IndexOutOfBoundsException

 catch(RuntimeException e) {
 System.out.println("RuntimeException");
 }// end RuntimeException
*/

import java.util.ArrayList;
import static java.lang.System.*;

public class PolyException
{
 public static void main(String [] args)
 {
 int [] x = new int[10];
 String str = “Dallas”;
 try{ x[-1] = 3; // error #1
 int y = str.charAt(-1); // error #2
 int z = 5/0; // error #3
 }
 // catches all three errors shown in try block
 catch(RuntimeException e) {
 out.println(“RuntimeException”);
 } // end catch RuntimeException

 }// end main
}// end class

Exercise 6:

1. Type in and execute the code above.
2. One at a time, comment out errors 1 and 2, recompile, and rerun. Explain the resulting outputs from the

three executions.
3. Reactivate all three errors, comment out the single catch block shown in this code example, then activate

the commented three catch blocks shown to the right. Recompile and rerun. Again, one at a time, comment
out error 1 and 2 as before, and rerun. Explain the resulting outputs.

 18

 19

Answers

Exercise 1:
1. Line 2 of PolymorphicAssignment.java assigns a Class B type object reference variable as the value of a Class

A object reference variable. This is okay as ClassB extends ClassA and therefore obj3’s type “is a” type of
Class A.

2. Line 3 is attempting to assign a superclass type object variable as the value of a subclass object reference
variable. This is like trying to assign a double value to an int. This is also true for line 4, but lines 3 and 4
differ from each other as the value being assigned in line 3 (obj2) never was a ClassB object while the value
being assigned in line 4 (obj1) was originally a ClassB object prior to the conversion to superclass type (like
type broadening from int to double). This distinction between lines 3 and 4 is crucial to understanding the
difference between lines 5 and 6.

3. Line 4 is not allowed because even though obj1 was, in line 2, assigned the value of a ClassB variable,
obj1’s internal format was somehow changed after line 2 to the superclass type in a manner analogous to the
type broadening from int to double.

4. Line 5 works because obj1’s value was originally a ClassB type (see line 2) but line 6 does not work as obj2
never was a ClassB type to begin with.

Exercise 2:
The output of PolyParam.java is chosen at random to be either “area = 50” or “area = 25.” Assignment of the
variable shp is made at random to be either tri, a variable of class type Triangle, or rect, a variable of class
type Rectangle. Both those respective classes have overridden the method area in the abstract superclass to reflect
the different areas for the triangle and the rectangle. Both the assignment statements shp = tri; and shp =
rect; are syntactically possible due to polymorphism—tri and rect are both subclasses (hence types of)
abstract class Shape.

Exercise 3:
1. In line 1 method1() returns a ClassA object reference variable and assigns it to obj1, which is also a Class A

object reference variable.
2. In line 2 method2() returns a ClassB object reference variable (which is a subclass type of Class A) and

assigns it to a ClassA object reference variable. The type assignment is still compatible.
3. In line 3 method1() returns a ClassA object reference and attempts to assign it to a ClassB type variable.

This is analogous to assigning a double value to an int variable.
4. In line 4 method3() returns a ClassA object reference value and attempts to assign it to a ClassB object

reference variable. Although lines 3 and 4 look very much alike, the “incompatible types” mismatches are
actually different because the value returned by method3() was originally a ClassB object type that was
“broadened” to ClassA format. This latter point is important to understanding the difference between lines 5
and 6.

5. Line 5 converts the underlying object reference type (a ClassB object value that was broadened to a ClassA
value) back to its original type though the use of a type cast.

6. Line 6 cannot type cast the ClassA object reference value returned by method1() as, unlike the object
returned in line 5, the object returned in line 6 never was a ClassB object reference to begin with.

Exercise 4:
The answer to Exercise 4 is the same as the answer for Exercise 2 except that this time the result is obtained by
polymorphic return types instead of polymorphic assignment statements.

Exercise 5
<APPLET CODE="HouseBuild.class" WIDTH=800 HEIGHT = 600> </APPLET>

import java.awt.*;

public class HouseBuild extends java.applet.Applet
{
 public void paint(Graphics g)
 {
 BuilderClass [] refArray = new BuilderClass[5];

public class Framer extends BuilderClass
{
 public void build(Graphics g)
 {
 g.drawRect(250, 300, 200, 100) ;
 }// end build
}// end class Framer

 refArray[0] = new Framer();

 20

 refArray[1] = new Windows(); public class Windows extends BuilderClass
 refArray[2] = new Door(); {
 refArray[3] = new Roof(); public void build(Graphics g)
 refArray[4] = new Chimney(); {
 g.drawRect(280,340, 20, 20);
 for (BuilderClass e: refArray) g.drawRect(400,340, 20, 20);
 e.build(g); }// end build
 }// end class Windows
 }// end paint
}// end class

 public class Roof extends BuilderClass
abstract class BuilderClass {
{ public void build(Graphics g)
 abstract void build(Graphics g); {
}// end BuilderClass g.drawLine(250, 300, 350, 200);

 g.drawLine(350, 200, 450, 300);
 }// end build public class Door extends BuilderClass
}// end class Roof {

 public void build(Graphics g)
 { public class Chimney extends BuilderClass g.drawRect(330, 360, 40, 40) ; { }// end build public void build(Graphics g) }// end class Door { g.drawLine(300, 250, 300, 200); g.drawLine(300,200, 330, 200); g.drawLine(330, 200, 330, 218);

 }// end build
 }// end class Framer

Exercise 6
1. Type in and execute given code.
2. Errors 1 (ArrayIndexOutOfBoundsException), 2 (IndexOutOfBoundsException) and

3 (RuntimeException) will all be caught by the RuntimeException object. This is analogous to
catching all three fish at once with the fine-mesh net. This catch is nonselective and does not allow for
recovery code specified to correct specific error situation.

3. Here the errors are caught one at a time by the polymorphic exception catches. This allows for
 recovery code written to correct specific error situations as they occur.

