
AP ®

Computer
Science
2006–2007 
Professional Development 
Workshop Materials

Special Focus: 
Using the Java Collections Hierarchy



AP® Computer
Science

2006–2007  
Professional Development
Workshop Materials

Special Focus:
Using the Java 
Collections Hierarchy

connect to college success™

www.collegeboard.com



AP Computer Science: 2006–2007 Workshop Materialsii ���������������������������������������������������

���������������������������������������������������������

The College Board is a not-for-profit membership association whose mission is to connect 
students to college success and opportunity. Founded in 1900, the association is composed 
of more than 5,000 schools, colleges, universities, and other educational organizations. 
Each year, the College Board serves seven million students and their parents, 23,000  
high schools, and 3,500 colleges through major programs and services in college 
admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. 
Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced 
Placement Program® (AP®). The College Board is committed to the principles of 
excellence and equity, and that commitment is embodied in all of its programs, services, 
activities, and concerns.

�����������������������

����������������������������������������������������������������������������
�������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
����������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������
�������������������������������������������

�����������������������������������������������������������
�������������������������������������������������������������������������������������������������



AP Computer Science: 2006–2007 Workshop Materials 1

Table of Contents

Special Focus: Using the Java Collections Hierarchy

 Introduction 

   Fran Trees  ................................................................................................................................................. 3

 Array Lists 

   Pat Philips  ................................................................................................................................................ 5

 Collections and ObjectDraw: Using a Collection Class with Iteration in a  
  Graphical Program 

   Leigh Ann Sudol  ............................................................................................................................... 13

 Comparing Memory Representations Between ArrayList and LinkedList:  
  Using the BlueJ Inspector to See a Representation of a Data Structure 

   Leigh Ann Sudol  ............................................................................................................................... 18

 Implementing the Java Marine Biology Case Study Using Maps 

   Christian Day ....................................................................................................................................... 26

 Sets and Maps: An Excursion 
   Bekki George  ....................................................................................................................................... 38 

 Collections API Activity 
   Cody Henrichsen  .............................................................................................................................. 59

 Teaching with Tiger: Using Java 5.0 Features in AP Computer Science Courses 
   Cay S. Horstmann  ............................................................................................................................ 67

 Web Resources for Collection Classes  
   Debbie Carter  ...................................................................................................................................... 75

 Contributors  ................................................................................................................................................. 79

 Contact Us  ..................................................................................................................................................... 80

 Important Note: The following set of materials is organized around a particular
 theme, or “special focus,” that reflects important topics in the AP Computer Science
 course. The materials are intended to provide teachers with resources and classroom
 ideas relating to these topics. The special focus, as well as the specific content of the
 materials, cannot and should not be taken as an indication that a particular topic will
 appear on the AP Exam.





AP Computer Science: 2006–2007 Workshop Materials 3

Special Focus: Using the 
Java Collections Hierarchy

Introduction
Fran Trees, editor
Drew University
Madison, New Jersey

Java includes a collections framework. A collection is an object that represents a group 
of objects. 

From the Java API: “The collections framework is a unified architecture for representing 
and manipulating collections, allowing them to be manipulated independently of the details 
of their representation. It reduces programming effort while increasing performance. It 
allows for interoperability among unrelated APIs, reduces effort in designing and learning 
new APIs, and fosters software reuse.”

The representation of a simplified Java hierarchy included on the next page contains more 
than is studied in AP Computer Science and less than is contained in the complete Java 
hierarchy. The diagram is intended to give you an overview of a much bigger picture. The 
interfaces studied in AP Computer Science that are part of the basic collections framework 
are Set, List, and Map. Because Map represents mappings more than simple collections, it 
does not extend Collection. However, Map can be manipulated and viewed in similar ways 
to collections, so it is usually included with the hierarchy.

The primary implementations of the collection interfaces that we study in AP 
Computer Science are HashSet, TreeSet, ArrayList, LinkedList, HashMap,  
and TreeMap. 

We hope that the materials contained in this section help you in the classroom and, more 
importantly, provide ideas and directions that will assist you in the development of your 
own materials. We have described teaching strategies and included sample lab assignments, 
problems, and worksheets. Also included is an introduction to Java 5 (Tiger) as it relates to 
the collections hierarchy and finally a list of Web-based resources that point to materials 
focusing on collections. I would like to thank the contributors for their hard work and 
continued commitment to our AP Computer Science family.



AP Computer Science: 2006–2007 Workshop Materials4

Special Focus: Using the 
Java Collections Hierarchy

The Java Collections Hierarchy 

Th
e 

sh
ad

ed
 b

ox
es

 a
re

 e
le

m
en

ts
 th

at
 a

re
 n
ot

 in
cl

ud
ed

 in
th

e 
A

P-
te

st
ab

le
 su

bs
et

.

R
an

do
m

 A
cc

es
s

A
bs

tr
ac

t L
ist

A
bs

tr
ac

t S
eq

ue
nt

ia
l L

ist

So
rt

ed
 S

et

A
bs

tr
ac

t S
et

L
i
n
k
e
d
L
i
s
t

L
i
s
t

T
r
e
e
S
e
t

H
a
s
h
S
e
t

H
a
s
h
M
a
p

 

So
rt

ed
M

ap
 

T
r
e
e
M
a
p

A
r
r
a
y
L
i
s
t

S
e
t

M
a
p

C
o
l
l
e
c
t
i
o
n

A
bs

tr
ac

tM
a p

So
rt

ed
M

ap

A
b
s
t
r
a
c
t

C
o
l
l
e
c
t
i
o
n



AP Computer Science: 2006–2007 Workshop Materials 5

Special Focus: Using the 
Java Collections Hierarchy

Array Lists 
Pat Philips
Craig High School
Janesville, Wisconsin

This review of array lists is meant to provide
• An introduction to ArrayList class
• Method analysis of ArrayList class
• Manipulation of data in array lists
• Lab practice using array lists with authentic data

The PowerPoint for this review is available on AP Central at http://apcentral.
collegeboard.com/workshop/csfiles. The materials included below are meant to 
accompany and supplement this online presentation.



AP Computer Science: 2006–2007 Workshop Materials6

Special Focus: Using the 
Java Collections Hierarchy

ArrayList Authentic Data Project 

Name:  ______________________________    

Complete these steps:
• View power point on the ArrayList class.
• Create an application that meets these specifications:
 _____Uses authentic data collected from almanacs on line
 _____Uses this data to design a class (object design)
 _____Accesses a text file to retrieve data used to instantiate objects 
 _____Loads objects into an ArrayList
 _____Allows user to select from a menu (switch) of statistical calculations
 _____Traverses the ArrayList to calculate statistics
 _____Produces readable output of selected statistics

Idea

• Collect data on automobile crash tests by model.
• Create a text file that might contain information like this:

 LandRover, Model_X, 4000, ($ damage) 2, (injury rating) 
 for several cars

• Design an “Auto” class with fields to store required data.
• Create methods including toString, compareTo, and accessors.
• You might want to allow the user to change the data fields of a given element
 This will require additional mutator methods.
• Create the main program logic to offer menu choices for display of data and
 statistical analysis such as mean, median, mode, greatest, least, sorts, and so on.
 Select those that are most meaningful for the data chosen.
• Allow the user to add additional objects to the ArrayList.
• Allow the user to remove objects from the ArrayList.
• Allow the user to save the ArrayList data back to a text file.
• Be sure the program allows for easy-to-read output with ample description 
 of results.

Step 1: Browse the online almanacs to select a topic and gather data.

Step 2: My topic is ______________________, and a text file of data is attached.



AP Computer Science: 2006–2007 Workshop Materials 7

Special Focus: Using the 
Java Collections Hierarchy

Step 3: The name of my class is ______________.
The fields needed for the class design include:

Step 4: Draw the UML (Unified Modeling Language) diagram for this project on the 
back of this page.

Step 5: Create the class code. Attach.

Step 6: The statistical analysis measures I will use:

Statistical Measure Why This Is Useful for This Data

 
Step 7: Create the code for your application. Attach.

Step 8: Self-evaluate with the attached rubric.



AP Computer Science: 2006–2007 Workshop Materials8

Special Focus: Using the 
Java Collections Hierarchy

Selected Methods Using ArrayList 

(These methods were chosen from a variety of projects. They are not intended to be a 
complete class but rather examples of various techniques created by students.)

Loading ArrayList with Data from a Text File
      int count = 0;
 String line;
 BufferedReader infile = new BufferedReader(new
 FileReader(“bowlgames.txt”));
 ArrayList bowlgame = new ArrayList(10);
 line = infile.readLine();
  
 while (line != null)
 {
    while(count < 10)
    {
  String whichbowl = line;
  String team1 = infile.readLine();
  double score1 =     
Double.valueOf(infile.readLine()).doubleValue();
  String team2 = infile.readLine();
  double score2 =
Double.valueOf(infile.readLine()).doubleValue();
  BowlGame game = new BowlGame(whichbowl, team1,
        score1,team2, score2);
  bowlgame.add(game);
  line =infile.readLine();
  count++;    
    }

Finding an Average
public static void average(ArrayList incominglist)
{
   double Score1;
   double Score2;
   int index;
   double Score3= 0;
   double Score4;
   int count = 0;
   for(index = 0; index < 10; index++)
   {
 BowlGame game2 = (BowlGame)incominglist.get(index);
 Score1 = game2.getScore1();



AP Computer Science: 2006–2007 Workshop Materials 9

Special Focus: Using the 
Java Collections Hierarchy

 Score2 = game2.getScore2();
 count+= 2;
 Score3 += Score1 + Score2;
   }
   Score4 = Score3/count;
   System.out.println(“average score of all Bowl Game Scores “ 
         + Score4);
}

Finding Greatest Value in an ArrayList
public static void highest(ArrayList incominglist)
{
   double max = 0;
   double Score1;
   double Score2;
   int index;
   for(index = 0; index < 10; index++)
   {
 BowlGame game2 = (BowlGame)incominglist.get(index);
 Score1 = game2.getScore1();
 if (Score1 > max)
    max = Score1;
 Score2 = game2.getScore2();
 if (Score2 > max)
    max = Score2;
   }
   System.out.println(“The greatest score in list “ + max);
}

Sorting an ArrayList
private static void sort() throws IOException
{
   System.out.println(“-------------------------------------------”);
System.out.println(“Sort Menu:” + 
 “\n” + “-’d’ to sort Descending” + 
 “\n” + “-’a’ to sort Ascending” +
 “\n” + “-’q’ to quit:”);
commandIn = (inRead.readLine()).charAt(0);
System.out.println(“ “);
System.out.println(“ “);
EntExpend localE;
int runHigh = 0;
int runLow = 0;
int run = 0;
int c;
int pastrun = 1000000;



AP Computer Science: 2006–2007 Workshop Materials10

Special Focus: Using the 
Java Collections Hierarchy

switch (commandIn)
{
   case ‘d’: 
  for (int i=0;i<List1.size();i++)
  {
     localE = (EntExpend)(List1.get(i));
     c=i;
     if (localE.isAge)
     {
   run = localE.Agelow;
      if (run >= pastrun)
      {
      runHigh = run;
      }
      if (run >= runHigh)
      {
         List1.remove(i);
         List1.add(0,localE);
      }
     }
     if (localE.isYear)
     {
        run = localE.Exyear;
        if (run >= pastrun)
        {
         runHigh = run;
        }
        if (run >= runHigh)
        {
         List1.remove(i);
         List1.add(0,localE);
        }
     }
     pastrun = run;
    }
    main();
    break;

 case ‘a’:
  for (int i=0;i<List1.size();i++)
  {
   localE = (EntExpend)(List1.get(i));
   c=i;
   if (localE.isAge)
   {
    run = localE.Agelow;
    if (run <= pastrun)
    {



AP Computer Science: 2006–2007 Workshop Materials 11

Special Focus: Using the 
Java Collections Hierarchy

     runLow = run;
    }
    if (run <= runLow)
    {
     List1.remove(i);
     List1.add(0,localE);
    }
   }
   if (localE.isYear)
   {
    run = localE.Exyear;
    if (run <= pastrun)
    {
     runLow = run;
    }
    if (run <= runLow)
    {
     List1.remove(i);
     List1.add(0,localE);
    }
   }
   pastrun = run;
  }
  main();
  break;
}



AP Computer Science: 2006–2007 Workshop Materials12

Special Focus: Using the 
Java Collections Hierarchy

ArrayList Project Rubric

Your Name:__________________________        

Topic:__________________________

Rate each category according to the following scale: 9–10 = Excellent, 7–8 = Very good, 
5–6 = Good, 3–4 = Satisfactory, 1–2 = Poor, and 0 = Unsatisfactory.

Possible Points Self-Assessment Teacher 
Assessment

Topic is suitable for 
ArrayList development, 
and text file is correctly 
designed

Project planning form is 
complete

Statistics calculated are 
valuable to the data used 
and justified

Two points for each useful 
statistic calculated

Four points for each 
ArrayList method 
correctly and efficiently used

Output and user interface 
is readable, understandable, 
and helpful

Code is efficient
Code is formatted and 
documented
Test plan is thorough for 
both code and data

Total Possible Points 



AP Computer Science: 2006–2007 Workshop Materials 13

Special Focus: Using the 
Java Collections Hierarchy

Collections and ObjectDraw: Using a Collection Class with 
Iteration in a Graphical Program 
Leigh Ann Sudol
Fox Lane High School
Bedford, New York

Introduction

The ObjectDraw libraries were developed by Williams College as a way to easily integrate 
graphics into the introductory computer science classroom in order to teach basic 
principles. The Collections classes are part of the java.util package and contain 
implementations of lists, sets, and a variety of other data structures. 

This lesson and activity is focused on combining the ease of using graphics with the 
Collection classes that are now part of the AP curriculum to provide students with 
a visual representation of iteration and a collection.

Description

The lesson includes several pieces and is meant to be addressed in the following manner.

PowerPoint
The PowerPoint presentation shown below outlines a sample program as well as some 
basics about the collection object ArrayList that is being used.

While Loops and Lists

Groupings of Objects

Computer Science II       Chapter 4: GN2

Anatomy of a While Loop

When you want to repeat something, but 
  you don't know how many times the loop

  will repeat.

while(boolean expression) {
  //code to be repeated here
}



AP Computer Science: 2006–2007 Workshop Materials14

Special Focus: Using the 
Java Collections Hierarchy

Assignment
The students will be responsible for creating a program similar to the one described in 
the PowerPoint slides. The first part of the assignment requires students to create an 
ArrayList of circles and then iterate that ArrayList to change a single property 
of each item in the list (for example, the color of each circle) once a mouse is clicked. 

Creating Groups of Objects

Previously when creating a series of dots or 
  lines, we could only change their properties 
  when they were first created, since there
  was one variable that represented them
  all.

We are going to use an ArrayList to hold 
 all the objects (dots in this case) so that
 we can change their properties while the
 program is running.

What Is an ArrayList?

An ArrayList is a group of objects. Each 
  object in the List has an index number. 
  
  Example with numbers:

 List = {3, 4, 5, 6, 7}
 

Iterating Through the Set

We want to change one property of each of 
  the circles. For this example, when clicked,
  the circles will move 10 pixels to the right.
  
//code on next slide

Code for Creating a Set of Circles

import objectdraw.*;
import java.util.*;  <- needed for ArrayList
 
class Circles extends WindowController{
  
    private ArrayList circles = new ArrayList();

    public void begin(){
         for int( i = 0; i < 10; i++){
                circles.add(new FilledOval(i*10, i*10, 10, 10, canvas)

         }
//continued on next slide

onMousePress

public void onMousePress(Location point){

   iterator myCircles = circles.iterator(); 
   //creates a way to move through the set
   while(myCircles.hasNext());  
         ((FilledOval)myCircles.next()).move(10,0);
   }
}
//this code moves all the circles to the right 10
   pixels

Summary

•  While loops are used when you don't know
   how many times the loop will execute.
•  A List is a group of things.
•  An Iterator is used to navigate a list.



AP Computer Science: 2006–2007 Workshop Materials 15

Special Focus: Using the 
Java Collections Hierarchy

The second part of the assignment requires students to think creatively to come up with 
a property to change on their own based upon a control that the user can implement 
(continuing with the first example, perhaps presenting a series of colored rectangles; when 
one rectangle is clicked, the color of all the circles changes to match the color of 
the selected rectangle).
 

Students are given a file containing an outline for a class. They will need to instantiate a 
private ArrayList variable as well as write in the code to both create the ArrayList of 
shapes and modify the color of the shapes when the mouse is clicked.

public class Circles extends WindowController{
 
 //Create a private variable to store the ArrayList of
 //FilledOvals for the program.
 
 /**
  * Use this method to instantiate your ArrayList of circles.
  * Instantiate at least 30 circles and place them in the
  * ArrayList.
  **/
 public void begin(){
  
 }
 
 /**
  * Use this method to iterate through the ArrayList to change
  * the property.
  **/
 public void onMousePress(Location point){
  
 }
}

Assignment
Phase I: 
•  Write a program that creates a pattern of
   shapes. When the user clicks on the screen,
   the program should change one property
   about the shape.

Phase II:
•  Implement some type of control such that 
   the user can influence the change (a place 
   for them to click that performs a specific
   operation).



AP Computer Science: 2006–2007 Workshop Materials16

Special Focus: Using the 
Java Collections Hierarchy

Extensions 
There are several possible extensions to this program, depending upon the learning 
outcome desired at this point in the curriculum:
• To understand how the Iterator or ArrayList works, students could
 compose a role play for the program that they wrote, highlighting the use of the
 ArrayList and Iterator.
• To understand how looping works, the students could be asked to selectively
 choose which items to change (for example, every third circle).
• To understand random numbers and their application, students could assign
 a random color to the circles as a changed property (by either calling the
 Color constructor that receives an RGB value and using random integers for
 each of the three parameters, or by choosing a select list of colors—two or
 three—and having students pick a random number from 1 to the number of
 colors to choose the color with the help of if statements).
• For more practice with ArrayLists, students could add multiple
 ArrayLists with varying shapes (circles, rectangles, and so on).
• For an example of polymorphism, students could add both FilledOval and
 FilledRect objects to the ArrayList, and when iterated, the objects
 could be cast to Drawable before changing their color. 

Lab Setup

Students will need the following for this program to be successful (in addition to a 
Java IDE):
1. The IDE used by students will need to be configured to use the ObjectDraw  
 libraries. Information specific to your operating system and IDE can be found at   
 http://applecore.cs.williams.edu/~cs134/eof/library. 
2. Students will either need a paper copy or electronic copy of the setup file. This is not  
 absolutely necessary but can be useful if ObjectDraw has not been used throughout  
 the course.



AP Computer Science: 2006–2007 Workshop Materials 17

Special Focus: Using the 
Java Collections Hierarchy

Solution

The following solution has been implemented for phase 1 of the color example used in 
the “Assignment” description. (The solution code appears in boldface.) 

public class Circles extends WindowController{
 
 //Create a private variable to store the ArrayList of
 //FilledOvals for the program.
 private ArrayList myCircles;
 
 /**
  * Use this method to instantiate your ArrayList of circles.
  * Instantiate at least 30 circles and place them in the
  * ArrayList.
  **/
 public void begin(){
  for(int i=0; i< 50; i++)
   myCircles.add(new FilledOval(i*20, i*20, 10, 10, 
canvas); }
 
 /**
  * Use this method to iterate through the ArrayList to change
  * the property.
  **/
 public void onMousePress(Location point){
  Iterator it = myCircles.iterator();
  while(it.hasNext()){
   FilledOval temp = (FilledOval)it.next();
   temp.setColor(Color.red);
  }
 }
}

Reference

Bruce, Kim, Andrea Danyluk, and Thomas Murtagh. Materials for Java: An Eventful 
Approach. Prentice Hall, 2004. http://applecore.cs.williams.edu/~cs134/eof. 



AP Computer Science: 2006–2007 Workshop Materials18

Special Focus: Using the 
Java Collections Hierarchy

Comparing Memory Representations Between ArrayList 
and LinkedList: Using the BlueJ Inspector to See a 
Representation of a Data Structure
Leigh Ann Sudol 
Fox Lane High School
Bedford, New York

Introduction

BlueJ is an IDE (integrated development environment) developed by several members of 
a team of college educators as a visual tool for introductory programmers to learn about 
object orientation. BlueJ makes this activity worthwhile in that it provides an object 
bench for instantiating objects, but it also provides functionality for using built-in objects 
from any of the Java library classes.

Description 

This activity uses the BlueJ IDE to view a physical representation of the difference 
between an ArrayList and a LinkedList. The lesson follows the steps below:
1.  Introduce the definition of a List (numbered, linear collection of items).

2.  Using a projection device for a computer screen, launch the BlueJ IDE to the starting  
 screen (shown below).

3.  Create a new BlueJ project (from the “Project” menu, choose “New Project”). 
 Name the project as appropriate and save it in an appropriate location. 



AP Computer Science: 2006–2007 Workshop Materials 19

Special Focus: Using the 
Java Collections Hierarchy

4.  From the “Tools” menu, choose “Use Library Class” and type 
 java.util.ArrayList into the “Class” box (see graphic below).

5.  Once you press Enter, you will be given a list of constructors to choose from.   
 Choose the default constructor, and click Ok. This will give you a dialog box for   
 construction. Click Ok again, and a representation of the ArrayList should appear  
 on your object bench.

6.  Repeat the process, this time instantiating a LinkedList variable 
 (java.util.LinkedList). After that object is instantiated, your BlueJ window   
 should appear as follows:



AP Computer Science: 2006–2007 Workshop Materials20

Special Focus: Using the 
Java Collections Hierarchy

7.  Each of the red boxes at the bottom of the screen is representative of the objects. By  
 right-clicking upon the box, you can choose any of the methods of the object to   
 execute. The next step in this process is to add some String variables to each of the  
 two lists. For consistency, add the same strings to both lists.
 a. Right-click the ArrayList icon and choose the method add(Object ..).
  This will give you a dialog box to enter a parameter to be added. Type a string
  into the box in quotes (e.g., “Someone’s Name”). Repeat the process until you   
  have added at least three names. You can verify this by calling on the size   
  method of the ArrayList in order to determine how many names were    
  successfully entered.
 b. Right-click the LinkedList icon and choose the method 
  add(Object ..). This will give you a dialog box to enter a parameter to be   
  added. Type the same strings into the box that you did for the ArrayList. 

8. You are now ready to view the differences between the two data structures. First  
 inspect the ArrayList object (right-click and choose “Inspect”). The window that   
 you will see gives the private data of the ArrayList. Double-click the arrow reference 
 to private Object[] elementData to view the array being kept. (It will show up in a  
 new window.) The window on the screen should resemble the following:

 a. At this point, you can engage students in a discussion that talks about what is   
  shown by that window—the reference to the array object and the array object   
  itself, where individual strings are stored by index, with a default size of 10.
 



AP Computer Science: 2006–2007 Workshop Materials 21

Special Focus: Using the 
Java Collections Hierarchy

 b. Either close or move those windows to the side and now inspect the
  LinkedList object. The reference now is to a LinkedList$Entry
  named Header. Upon opening this object, your window should be as follows:

 c.  A discussion of what you are seeing should ensue. Why is the LinkedList
  set up differently than the ArrayList? How do you get to the “next” object
  in the sequence?

Assignment 

Have students complete the included List worksheet, which asks them to compare 
ArrayList and LinkedList objects and make conjectures about where each would best 
be applied.

Extensions

There are several possible extensions to this program, depending upon the learning 
outcome desired at this point in the curriculum:
• Have students look at the object returned by the Iterator object of both the  
 array and ArrayList objects to see if there are differences in the Iterator 
 that parallel the way the list is stored.
• Students can make comparisons between ArrayList, LinkedList, and other  
 collection objects in the same way as well. 
• Advanced AB students can try to build their own Entry class from the 
 LinkedList demo and construct a basic LinkedList whose structure would  
 appear similar to the java.util.LinkedList class used in this activity.



AP Computer Science: 2006–2007 Workshop Materials22

Special Focus: Using the 
Java Collections Hierarchy

Lab Setup

Students will need the following for this program activity to be successful:

1.  Students should have access to a machine with BlueJ and the IDE installed. They   
 should also be given sample data sets (strings work really well) in order to construct  
 their lists for comparison.

2.  Students will also need a copy of the worksheet comparing LinkedList 
 to ArrayList.

References

Barnes, David, and Michael Kolling. Objects First with Java—A Practical Introduction 
Using BlueJ. 2nd ed. Prentice Hall/Pearson Education, 2004.



AP Computer Science: 2006–2007 Workshop Materials 23

Special Focus: Using the 
Java Collections Hierarchy

ArrayList vs. LinkedList Worksheet

Name:__________________________  

Part A: Memory Representations

Draw memory representations of both ArrayList and LinkedList. Label each part of 
the diagrams to point out the specific differences between the two data structures.

Part B: Uses and Efficiency

Describe how the structure of an ArrayList makes it more efficient for accessing 
individual elements.



AP Computer Science: 2006–2007 Workshop Materials24

Special Focus: Using the 
Java Collections Hierarchy

Describe how the structure of LinkedList makes it more efficient for insertion into the 
middle of the list, as well as for a dynamic length list (lots of resizing).

Part C: List? ArrayList? LinkedList? What Are the Real Differences?

Fill in the following chart regarding the differences between ArrayList 
and LinkedList:

ArrayList LinkedList

Interface

Traversing the List

Indexing a Specific 
Item in the List

Stored in Memory



AP Computer Science: 2006–2007 Workshop Materials 25

Special Focus: Using the 
Java Collections Hierarchy

Give an example of a program where an ArrayList would be more beneficial to use.

Give an example of a program where a LinkedList would be more beneficial to use.



AP Computer Science: 2006–2007 Workshop Materials26

Special Focus: Using the 
Java Collections Hierarchy

Implementing the Java Marine Biology Case Study  
Using Maps
Christian Day
Emma Willard School
Troy, New York 

The exercise below is designed to provide instructions to modify the unbounded ocean 
implementation of the AP Marine Biology Simulation Case Study. The implementation 
provided by the College Board uses the ArrayList data structure to hold the fish  
in the environment. This implementation modifies that implementation using a Map 
instead. The Map interface provides functionality for mapping keys to values in an 
efficient manner. In this implementation, the location of each fish will be used as a key 
that refers to the fish (or any class that implements the Locatable interface) with that 
key location.

The Java Collections framework offers two classes that implement the Map interface. 
These are HashMap and TreeMap. Class HashMap uses a hash table to store the keys. Each 
key includes a reference to the value it maps to; in this case, this will generally be a fish.  
A TreeMap uses a tree data structure (specifically a red-black tree) to store the keys. Just 
as with HashMap, each key includes a reference to the value it maps to. 

This exercise will not try to explain the data structures underlying the Java implementation 
of Maps. The reader should know the following about the performance of HashMaps  
and TreeMaps:

Java Class Add a New
Element

Find an Element Remove an
Element

HashMap O(1) O(1) O(1)
TreeMap O(log N) O(log N) O(log N)

Where to Start

This exercise changes the underlying data structure used to store the environment in 
an unbounded ocean. Being a dedicated fan of encapsulation, I have completed this 
exercise in a manner that does not affect any of the other case study classes. While 
I use an unadulterated release of the case study, there is no reason why the changes 
implemented should not work if you have already committed time to modifying the 



AP Computer Science: 2006–2007 Workshop Materials 27

Special Focus: Using the 
Java Collections Hierarchy

case study in significant ways. For example, if your case study code currently includes 
additional classes for creating sharks that chase the fish, or if your fish have the ability to 
breed and die, that should have no effect on this exercise.

Instructions

Note: The horizontal lines below delineate sets of directions.
_______________________________________________________________________

Begin by opening the file UnboundedEnv.java. Save this file as UnboundedEnvMap.java, 
and rename the class as UnboundedEnvMap.

Add the following import to the list of packages imported. The HashMap and TreeMap 
classes, as well as the Map interface, are all located in the java.util package.
 
import java.util.*;

_______________________________________________________________________

At the top of the class where the instance variables are declared, replace private 
ArrayList objectList with the following line: 

 private HashMap objectMap;

_______________________________________________________________________

Modify the constructor for class UnboundedEnv. 

Begin by changing the name of the constructor to UnboundedEnvMap to match the name 
of the class.

Replace objectList = new ArrayList(); with 

 objectMap = new HashMap();

This creates a new HashMap with a capacity of 16 and a load factor of 0.75. The load 
factor is an indication of how full the HashMap can get (in this case 75% full) before the 
HashMap is resized. Resizing the HashMap doubles the size of the underlying hash table 
and then transfers the existing elements to the new, larger hash table. This is a O(N) 
operation so it is worthwhile to think about the initial size. Using the default values, 



AP Computer Science: 2006–2007 Workshop Materials28

Special Focus: Using the 
Java Collections Hierarchy

the HashMap will be resized after 12 keys have been placed in the map. The integer 
constructor for class HashMap describes the initial capacity of the HashMap:
 
 objectMap = new HashMap(500)1 

If you choose to make this change, you will have to return to using the default constructor 
in order to use the TreeMap class.

_______________________________________________________________________

Methods numRows, numCols, and isValid remain unchanged.

_______________________________________________________________________

Method numObjects requires the simple change of objectList to objectMap:

 return objectMap.size();

_______________________________________________________________________

Method allObjects needs significant modifications. None of the code in the current 
method is necessary. The Map method values is used to get a list of all values (not keys) 
in a Map. Method values returns a Collection, but the allObjects method needs to 
return an array of Locatable objects. 

Fortunately, the Collection interface provides the method toArray that returns an 
array. Unfortunately, this method returns an array of class Object, and there is no way to 
cast the entire array2.  The alternative method toArray needs to be used instead:
 
 public Object[] toArray(Object[] a)

     

1  The integer constructor for class HashMap rounds the value up to the nearest power of 2. Using 500 will   
 round the initial size up to 512 (29).

2 Really, it’s true. Your program will compile using return 
 (Locatable[])objectMap.values().toArray(), but it will throw a     
 ClassCastException when the line attempts to execute.



AP Computer Science: 2006–2007 Workshop Materials 29

Special Focus: Using the 
Java Collections Hierarchy

This version of toArray uses the parameter it receives (Object[] a) to determine the 
class that the members of the Collection should be cast to before being placed in the 
array. The code to be added looks like this:

 Locatable[] locatableArray = new Locatable[0];

 locatableArray = 

  

 (Locatable[])objectMap.values().toArray(locatableArray);

 return locatableArray;

The distinction between public Object[] toArray() and 
public Object[] toArray(Object[] a) is significant and complex. 
The API documentation for this method provides the following description:

 Returns an array containing all of the elements in this collection; the 
runtime type of the returned array is that of the specified array. If the 
collection fits in the specified array, it is returned therein. Otherwise, a 
new array is allocated with the runtime type of the specified array and the 
size of this collection.

The second sentence explains why we can safely initialize locatableArray to an array 
of size 0.  When we make the call to toArray and pass it an array of Locatable objects, 
we do so knowing full well that any object contained within the Collection (which 
was constructed from the Map) is a Locatable. There is no way, in our program, that 
an object that does not implement the Locatable interface could end up in the Map. If 
the toArray method did encounter an object that did not implement the Locatable 
interface, an ArrayStoreException exception would be thrown.

_______________________________________________________________________

3  Indeed, we must set this to 0. Otherwise, we risk the potential of returning an empty array of the size   
 given. That will cause trouble in the toString() method, which attempts to loop through all elements   
 in the array returned, extracting a Locatable from each.



AP Computer Science: 2006–2007 Workshop Materials30

Special Focus: Using the 
Java Collections Hierarchy

Method isEmpty should return true when the Location given does not contain an 
object. In our Map implementation, that means that the Location is not used as a key in 
the Map. The method containsKey can be used, but it returns true if the Location is in 
the Map. We use the unary not operator to negate the result:

 return !objectMap.containsKey(loc);

_______________________________________________________________________

Method objectAt is designed to return the Locatable given a location. This is exactly 
what a Map does, so the modification in this method is simple:

 return (Locatable)objectMap.get(loc);

_______________________________________________________________________

Method toString will work without making any changes. The programmer of the class 
was clever enough to use public method allObjects() when getting the array. Since 
we have modified method allObjects() so that it returns the expected result, we are 
assured this method will work.

_______________________________________________________________________

Method add needs to replace one line. With the List interface, we were able to add obj 
to the List using the add method. Now we need to associate a key with that value. The 
method already creates a Location loc to insure the location of obj is empty. 

Replace objectList.add(obj); with

 objectMap.put(loc, obj);

_______________________________________________________________________



AP Computer Science: 2006–2007 Workshop Materials 31

Special Focus: Using the 
Java Collections Hierarchy

The code for method remove needs to be completely replaced. The following lines take 
advantage of the fact that the Map interface method remove returns null when the 
key to be removed is not in the Map.

 if (objectMap.remove(obj.location()) == null) {

  throw new IllegalArgumentException(“Cannot remove “ +

                      obj + “; not there”);

 }

_______________________________________________________________________
 
Method recordMove works best with the Map implementation if you simply use the code 
from the boundedEnv class. 

To test if obj is at the same location as oldLoc (i.e., the Fish has not moved), we 
use the test from the bounded environment:

 Location newLoc = obj.location();

 if ( newLoc.equals(oldLoc) )

           return;

      
To test that the move made is valid, we again use the test from the bounded environment:

 Locatable foundObject = objectAt(oldLoc);

 if ( ! (foundObject == obj && isEmpty(newLoc)) )

    throw new IllegalArgumentException(“Precondition                

 violation moving “

  + obj + “ from “ + oldLoc);

The only change comes in the form of removing the Fish at oldLoc and putting it at 
its new location. In the bounded environment, we did this by setting the old location 
to null and the new location to obj. We do the same thing with the Map, but with 
different code:

Replace the lines

 theGrid[newLoc.row()][newLoc.col()] = obj;

 theGrid[oldLoc.row()][oldLoc.col()] = null; 



AP Computer Science: 2006–2007 Workshop Materials32

Special Focus: Using the 
Java Collections Hierarchy

with
 
 objectMap.remove(oldLoc);

     objectMap.put(newLoc, obj);

_______________________________________________________________________

The private helper method indexOf is no longer necessary in the Map implementation.

_______________________________________________________________________

Real-Time Performance Testing

Performing a thorough and accurate performance test is made difficult by the use of the 
RandNumGenerator class. This class is used in order to ensure the randomness of the 
values calculated. To accurately test our changes, we would like to have the exact same 
sequence of events occur. To do this, we would like to seed the random number generator 
with some value. There is no simple way to do this4,  so we will settle for a less precise 
method that will still yield meaningful results.

I tested the performance of the Map using the Fish class located in the 
“DynamicPopulation” folder in the core case study and the SimpleMBSDemo2 
class. Any implementation that causes the fish to breed will do, but the more rapid 
the explosion, the more quickly you will see results.

Timing the results:

The getTimeInMillis() static method in class System will tell you the current time in 
milliseconds5. Modify the method step in class Simulation:

    long startTime = System.currentTimeMillis();
    Locatable[] theFishes = theEnv.allObjects();

  
  

4  But if you would like to try, create your own RandNumGenerator class with a constructor that takes   
 an int that is the seed for the generator.

5  However, this clock is only updated every 1/60th of a second, so your results may seem a little strange for   
 small numbers.



AP Computer Science: 2006–2007 Workshop Materials 33

Special Focus: Using the 
Java Collections Hierarchy

    for ( int index = 0; index < theFishes.length; index++ )
    {

      ((Fish)theFishes[index]).act();

    }

 long endTime = System.currentTimeMillis();

    System.out.println(“The full simulation with “ + 

   theEnv.numObjects() + “ Fish took “ + 

   (endTime - startTime) + “ milliseconds”);

This will display the cumulative amount of time that it takes to act on every Fish. Using 
the Fish class from the “DynamicPopulation” folder, Fish populations grow very quickly. 
It doesn’t take much information to be able to conclude that the HashMap implementation 
of this program provides a significant performance upgrade over the
ArrayList implementation. The following is a chart comparing the performance of the 
ArrayList to the performance of the HashMap for up to 3,000 Fish. 

_______________________________________________________________________

As you can see, by the time there are 3,000 Fish in the environment, the ArrayList 
implementation is taking nearly two seconds (on a 3 GHz Intel Pentium III® with 2 
GB of RAM running Microsoft Windows XP®) to act on all of the Fish. The HashMap 
implementation is still taking less than 100 milliseconds (1/10 of a second).

_______________________________________________________________________

HashMap vs. ArrayList

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 

3000 2000 1000 500 

T
im

e

Number of Fish

ArrayList

HashMap



AP Computer Science: 2006–2007 Workshop Materials34

Special Focus: Using the 
Java Collections Hierarchy

Performance Evaluation

In reality, having a fish act comprises a number of different well-defined actions. The 
following depicts the different actions taken in the case study while running the Fish 
class available in the “DynamicPopulation” folder. The steps taken by method act are 
depicted one at a time. 

 Fish:

     act()

 Fish:

     isinEnv()

 Environment:

    objectAt(Location)

ArrayList O(N) HashMap O(1)

Call List method 
indexOf(loc), which 
is a O(N) operation

Hash the Location 
given and look 
there for a match



AP Computer Science: 2006–2007 Workshop Materials 35

Special Focus: Using the 
Java Collections Hierarchy

You can see that the simple call to method isInEnv() already causes the List version 
of this program to perform a O(N) operation. An attempt to map all the method calls 
made in method act is made on the following pages. The table below summarizes the 
complexity of different actions in different implementations of the program.

Action 2D Array ArrayList HashMap TreeMap

Find a 
Locatable 
in the 
environment 
given a location

Exactly 1 lookup 
and comparison:
O(1)

From 1 to N 
lookups and 
comparisons: 
O(N)

Exactly 1 
lookup and 
comparison:
O(1)

O(log N)

Remove a Fish O(1) O(N) O(1) O(log N)

Add a Fish O(1) O(N) O(1) O(log N)

Check empty 
neighbors

O(1) O(N) O(1) O(log N)

Generate an 
array of Fish 
in the list

O(N) O(N) O(N) O(N)



AP Computer Science: 2006–2007 Workshop Materials36

Special Focus: Using the 
Java Collections Hierarchy

Diagram (Continued): Comparison of Algorithmic Complexity Between 
the ArrayList and the HashMap Implementation in the Act Method

Step 1: Breeding

Fish:  
act()  

Fish:  
breed()  

Fish:  
emptyNeighbors()  

 

Environment (from SquareEnvironment): 
neighborsOf(Location)  

ArrayList 
O(1)  

HashMap 
O(1)  

HashMap O(1)  

The number 
of neighbors 
is unrelated 
to N 

The number 
of neighbors 
is unrelated 
to N 

Hash the Location 
given and look 
there for a match. 

 

Environment: 
isEmpty(Location)

  
 
ArrayList O(N)  HashMap O(1)  

Calls 
objectAt(loc),  
which uses the  List  
method indexOf ,  
which  is a  O(N)  
operation  

Calls Map  method 
containsKey, which 
gets the hash code of 
loc  and checks that 
item in the hash table: 
O(1)  

 

Fish:  
generateChild(Location)

 

 

Fish: 
Fish(Environment, Location, Direction, Color)  

 

Fish: 
Initialize(Environment, Location, Direction, Color)  

Environment: 
add(Fish)  

 

Environment: 
isEmpty(Location)  

ArrayList O(N)  HashMap O(1)  

Calls objectAt(loc), 
which uses the  List  method  
indexOf , which is a  O(N)  
operation  

Calls Map me thod  
containsKey, which 
gets the has h code of 
loc  and check s that 
item in the hash table: 
O(1)  

 

(Called four times)

(Called four times)



AP Computer Science: 2006–2007 Workshop Materials 37

Special Focus: Using the 
Java Collections Hierarchy

Diagram (Continued): Comparison of Algorithmic Complexity Between 
the ArrayList and the HashMap Implementation in the Act Method

Step 2: Moving

Fish: 
act()  

Fish: 
move()  

Fish: 
nextLocation()  

Fish: 
emptyNeighbors()  

ArrayList O(1)  HashMap O(1)  

Operations  on  list of  empty  neighbors always  work on  
at most four  entries in that List  

 

Environment (from 
SquareEnvironment): 
neighborsOf(Location)  

ArrayList 
O(1)  

HashMap 
O(1)  

The number 
of neighbors 
is unrelated 
to N 

The number 
of neighbors 
is unrelated 
to N 

 

Direction: 
reverse()  

 
ArrayList
O(1)

HashMap 
O(1)  

 

Environment: 
getNeighbor(Location, Direction)

 
ArrayList
O(1)  

HashMap 
O(1)  

Fish: 
changeLocation(Location)  

Environment: 
recordMove(Locatable, Location)  

 
ArrayList O(N)  HashMap O(1)  

Loops through the entire 
list looking  for  ob jects 
tha t match the  old 
location  and  the  location 
of the new  Locatable  

Uses O(1) objectAt  
for the old location and  
O(1) 
isEmpty(Location)  
for the  location  of  the  
new Locatable  

 



AP Computer Science: 2006–2007 Workshop Materials38

Special Focus: Using the 
Java Collections Hierarchy

Sets and Maps: An Excursion
Bekki George
James E. Taylor High School
Katy, Texas

Set Lesson: Teacher Notes

Prior to teaching this lesson, teachers should ensure that students are familiar with using 
ListIterator and Iterator on ArrayList and/or LinkedList.

Included in the lesson:
• PowerPoint presentation on Set that can be found on AP Central at 
 http://apcentral.collegeboard.com/workshop/csfiles 
• Set Worksheet (below)
• Answers to Set Worksheet (below)

I start the lesson by giving notes on Set and follow up with the worksheet. After checking 
the worksheet, I give a short quiz the next class day to check for understanding. I then 
assign these short programs that use Set:

1. Write a program that uses a Set to determine the number of unique words 
 in a text file.

2. Design a class called MathSet that has a default constructor and the 
 following methods: 
 • Set union(Set s)—Example call: s1.union(s2). This method returns   
  the union of s1 and s2 but will not modify s1.
 • Set intersect (Set s)—Example call: s1.intersect(s2). This method  
  returns the intersection of s1 and s2 but will not modify s1.
 • Set difference(Set s)—Example call: s1.difference(s2).
  This method returns the difference of s1 and s2 but will not modify s1. The
  difference of two sets consists of the elements of s1 that are not contained in s2.
 • boolean subset(Set s)—This method will determine if the calling set
  is a subset of the argument.
 • boolean superset(Set s)—This method will determine if the calling
  set is a superset of the argument (in other words, the argument is a subset of  
  the calling set).



AP Computer Science: 2006–2007 Workshop Materials 39

Special Focus: Using the 
Java Collections Hierarchy

Map Lesson: Teacher Notes

After students demonstrate an understanding of Set, I begin the lesson on Map. I use 
the same format as above with the PowerPoint presentation, worksheet, and a quiz. I 
like to use the sample free-response question from the AP® Computer Science Course 
Description (number 2 from page 111) as one lab, and for another lab using sets and 
maps I use the Schedule Builder program (see below). Another idea for a lab assignment 
that incorporates maps is to simulate a foreign language dictionary by pairing a word or 
phrase in another language with a word or phrase in the English language.

Included in this lesson: 
• PowerPoint presentation on Map that can be found on AP Central at 
 http://apcentral.collegeboard.com/workshop/csfiles
• Map Worksheet (below)
• Answers to Map Worksheet (below)
• Schedule Builder Lab Assignment (below)



AP Computer Science: 2006–2007 Workshop Materials40

Special Focus: Using the 
Java Collections Hierarchy

Set Worksheet

Name:__________________________ 

1. Which of the following correctly defines a Set object?
 a. Set A = new Set();
 b. Set B = new HashSet();
 c. HashSet C = new Set();
 d. Both a and b

2. What is a possible output for the following?
  Set s1 = new HashSet();

  s1.add(“one”);

  s1.add(“two”);

  s1.add(“three”);

  s1.add(“two”);

  System.out.print(s1);

 
  I. [one, two, three]
  II. [one, two, three, two]
  III. [three, two, one]

 IV. [one, three, two]

 a. I only
 b. II only
 c. IV only
 d. I, III, and IV only
 e. I, II, III, and IV



AP Computer Science: 2006–2007 Workshop Materials 41

Special Focus: Using the 
Java Collections Hierarchy

3. What is a possible output for the following?
  Set s1 = new TreeSet();

  s1.add(“one”);

  s1.add(“two”);

  s1.add(“three”);

  s1.add(“two”);

  System.out.print(s1);

  I. [one, two, three]
  II. [one, two, three, two]
  III. [three, two, one]

  IV. [one, three, two]

 a. I only
 b. II only
 c. IV only
 d. I, III, and IV only
 e. I, II, III, and IV

4. What is a possible output for the following code segment?
  Set s2 = new HashSet();

  for(int i = 1; i<10; i+=2)

   s2.add(new Integer(i));

  System.out.print(s2);

 a. [9, 1, 3, 7, 5]
 b. [1, 3, 7, 5, 9]
 c. [1, 3, 5, 7, 9]
 d. All of the above



AP Computer Science: 2006–2007 Workshop Materials42

Special Focus: Using the 
Java Collections Hierarchy

5. Given that s3 is a HashSet and contains the following elements, what is the possible 
output?
 //s3 = [4, 8, 9, 1, 16, 18, 12]

 s3.add(new Integer(s3.size()));

 System.out.println(s3);

 a. [4, 8, 9, 1, 16, 18, 12, 6]
 b. [4, 8, 9, 1, 16, 18, 12, size]
 c. [4, 8, 9, 1, 16, 18, 12, 7]
 d. [4, 8, 9, 1, 16, 18, 7, 12]
 e. Both c and d 

6. Given the following declarations, which of the following would successfully remove 
value 12 from the set s3?
  Set s3 = new HashSet();// assume elements are added to s3

  Iterator it = s3.iterator();

  Integer x = new Integer(12);

I. boolean takeOut = false;

   while(it.hasNext())

   {

     if(it.next().equals(x))

takeOut = true;

   }

   if(takeOut)

     s3.remove(x);

II. while(it.hasNext())

      {

        if(s3.contains(x))  

           it.remove(x);  

        it.next();   

 }

III. if( s3.contains(x))

          s3.remove(x);

IV. s3.remove(x);

 a. I only
 b. II only
 c. I, II, and III only
 d. I, III, and IV only
 e. I, II, III, and IV



AP Computer Science: 2006–2007 Workshop Materials 43

Special Focus: Using the 
Java Collections Hierarchy

7. Which of the following would you check to see if s1 is a subset of s2?
 a. s1.subset(s2);
 b. s2.subset(s2);
 c. s1.containsAll(s2);
 d. s2.containsAll(s1);
 
8. Write the code to find the union of sets s1 and s2.

9. List and describe five methods in the Set interface.

 10. List the similarities and differences between TreeSet and HashSet.



AP Computer Science: 2006–2007 Workshop Materials44

Special Focus: Using the 
Java Collections Hierarchy

Answers to Set Worksheet

1. Which of the following correctly defines a Set object?
 b. Set B = new HashSet();
 
2. What is a possible output for the following?
  Set s1 = new HashSet();

  s1.add(“one”);

  s1.add(“two”);

  s1.add(“three”);

  s1.add(“two”);

  System.out.print(s1);

 
  I. [one, two, three]
  II. [one, two, three, two]
  III. [three, two, one]

 IV. [one, three, two]

 d. I, III, and IV only

3. What is a possible output for the following?
  Set s1 = new TreeSet();

  s1.add(“one”);

  s1.add(“two”);

  s1.add(“three”);

  s1.add(“two”);

  System.out.print(s1);

  I. [one, two, three]
  II. [one, two, three, two]
  III. [three, two, one]

  IV. [one, three, two]

 c. IV only
 



AP Computer Science: 2006–2007 Workshop Materials 45

Special Focus: Using the 
Java Collections Hierarchy

4. What is a possible output for the following code segment?
  Set s2 = new HashSet();

  for(int i = 1; i<10; i+=2)

   s2.add(new Integer(i));

  System.out.print(s2);

 d. All of the above

5. Given that s3 is a HashSet and contains the following elements, what is the  
 possible output?
 //s3 = [4, 8, 9, 1, 16, 18, 12]

 s3.add(new Integer(s3.size()));

 System.out.println(s3);

 e. Both c and d 

6. Given the following declarations, which of the following would successfully remove  
 value 12 from the set s3?
  Set s3 = new HashSet();// assume elements are added to s3

  Iterator it = s3.iterator();

  Integer x = new Integer(12);

I. boolean takeOut = false;

   while(it.hasNext())

   {

     if(it.next().equals(x))

takeOut = true;

   }

   if(takeOut)

     s3.remove(x);

II. while(it.hasNext())

      {

        if(s3.contains(x))  

           it.remove(x);  

        it.next();   

 }

III. if( s3.contains(x))

          s3.remove(x);

IV. s3.remove(x);

 d. I, III, and IV only



AP Computer Science: 2006–2007 Workshop Materials46

Special Focus: Using the 
Java Collections Hierarchy

7. Which of the following would you check to see if s1 is a subset of s2?
 d. s2.containsAll(s1);
 
8. Write the code to find the union of sets s1 and s2.
 Set s3 = new HashSet();

 s3.addAll(s1);

 s3.addAll(s2);

9. List and describe five methods in the Set interface.
 Answers will vary.

 10. List the similarities and differences between TreeSet and HashSet.
 Answers will vary (most should say that TreeSet is ordered and HashSet 
 is not).



AP Computer Science: 2006–2007 Workshop Materials 47

Special Focus: Using the 
Java Collections Hierarchy

Map Worksheet

Name:__________________________ 

1.  What is the output of the following? 
 Map colors = new TreeMap();

 String[] words = {“blue”, “red”, “green”, “yellow”,   

“black”};

 int j = 0;

 for(int i = 1; i<10; i+=2)

  {colors.put(new Integer(i), words[j]);

  j++;}  

 System.out.println(colors);

 a.  {1=blue, 3=red, 5=green, 7=yellow, 9=black}
 b.  {blue=1, red=3, green=5, yellow=7, black=9}
 c.  {blue, red, green, yellow, black}
 d. [1, 3, 5, 7, 9]

2.  Using colors as declared above, what is the output of the following?
 System.out.println(colors.put(new Integer(colors.size()), 

 “magenta”));

 a.  true
 b.  false
 c.  green
 d. magenta

3.  What will the contents of colors now be after the statement in question 2?
 a.  {1=blue, 3=red, 5=green, 7=yellow, 9=black}
 b.  {1=blue, 3=red, 5=magenta, 7=yellow, 9=black}
 c.  {1=blue, 3=red, 5=green=magenta, 7=yellow, 9=black}
 d.  {blue=1, red=3, magenta=green=5, yellow=7, black=9}
 e.  {blue, red, magenta, green, yellow, black}



AP Computer Science: 2006–2007 Workshop Materials48

Special Focus: Using the 
Java Collections Hierarchy

4.  What is outputted by the following (using colors from question 1)?
 System.out.println(colors.keySet());

 a. [blue, red, green, yellow, black]
 b. [1, 3, 5, 7, 9]
 c. {1=blue, 3=red, 5=green, 7=yellow, 9=black}
 d. true

5.  What is the difference between a Map and a Set?

6.  What is the difference between a TreeMap and a HashMap?

7.  Which of these would return the value to which this map maps the specified key?
 a. keySet
 b.  values
 c.  put
 d.  get
 



AP Computer Science: 2006–2007 Workshop Materials 49

Special Focus: Using the 
Java Collections Hierarchy

8.  Describe the following methods:
 a. clear

 b.  containsKey

 c.  containsValue

 d.  get

 e.  put

 f.  remove

9.  Given this code from question 1:
 Map colors = new TreeMap();

 String[] words = {“blue”, “red”, “green”, “yellow”,    

“black”};

 int j = 0;

 for(int i = 1; i<10; i+=2)

  {colors.put(new Integer(i), words[j]);  

 j++;}  

 Write the code needed to output the map as follows:

 Color  Number
 blue    1
 red    3
 ...



AP Computer Science: 2006–2007 Workshop Materials50

Special Focus: Using the 
Java Collections Hierarchy

Answers to Map Worksheet

1.  What is the output of the following? 
 Map colors = new TreeMap();

 String[] words = {“blue”, “red”, “green”, “yellow”,   

“black”};

 int j = 0;

 for(int i = 1; i<10; i+=2)

  {colors.put(new Integer(i), words[j]);

  j++;}  

 System.out.println(colors);

 a.  {1=blue, 3=red, 5=green, 7=yellow, 9=black}
 
2.  Using colors as declared above, what is the output of the following?
 System.out.println(colors.put(new Integer(colors.size()), 

 “magenta”));

 c.  green

3.  What will the contents of colors now be after the statement in question 2?
 b.  {1=blue, 3=red, 5=magenta, 7=yellow, 9=black}

4.  What is outputted by the following (using colors from question 1)?
 System.out.println(colors.keySet());

 b. [1, 3, 5, 7, 9]
 
5.  What is the difference between a Map and a Set?
 Answers will vary, but look for something like: a Map uses keys, a Set does not.

6.  What is the difference between a TreeMap and a HashMap?
 TreeMap is ordered by keys.

7.  Which of these would return the value to which this map maps the specified key?
 d.  get



AP Computer Science: 2006–2007 Workshop Materials 51

Special Focus: Using the 
Java Collections Hierarchy

8.  Describe the following methods:
 a. clear
  Removes all mappings from this map
 b.  containsKey
  Returns true if this map contains a mapping for the specified key
 c.  containsValue
  Returns true if this map maps one or more keys to the specified value
 d.  get
  Returns the value to which this map maps the specified key
 e.  put
  Rates the specified value with the specified key in this map
 f.  remove
  Removes the mapping for this key from this map if it is present

9.  Given this code from question 1:
 Map colors = new TreeMap();

 String[] words = {“blue”, “red”, “green”, “yellow”,    

“black”};

 int j = 0;

 for(int i = 1; i<10; i+=2)

  {colors.put(new Integer(i), words[j]);  

 j++;}  

 Write the code needed to output the map as follows:

 Color  Number
 blue    1
 red    3
 ...

 Set keys = colors.keySet();

 Iterator it = keys.iterator();

 System.out.println(“Color \tNumber”);

 while(it.hasNext())

 {Integer x = (Integer)it.next();

   String c = (String)colors.get(x);

   System.out.println(c + “\t“ + x);}



AP Computer Science: 2006–2007 Workshop Materials52

Special Focus: Using the 
Java Collections Hierarchy

Schedule Builder Lab Assignment

Consider the following StudentInfo interface that will represent a student’s name and 
the course that student wishes to add to his or her schedule:

public interface StudentInfo

{

String name();

String course();

} 

The following class, Schedules, will be used to store students’ names and their schedules. 
Information from StudentInfo objects will be stored in this class as a TreeMap. In the 
TreeMap, the keys are the student names, and for each key the corresponding value is a 
Set of the classes the student has signed up for (since no one can sign up for the same 
class twice, Set is used).

public class Schedules

{

private Map theSchedules;

public Schedules() 

{ 

theSchedules = new TreeMap(); 

}

// postcondition: Information from theStudent

// has been added to theSchedules

public void addClassToSchedule(StudentInfo theClass)

{ /* to be implemented in part (a) */ }

public void printSchedule(String studentName)

{ /* to be implemented in part (b) */ }

public void printRoster()

{ /* to be implemented in part (c) */ }

private Set courseListing()

//implementation not shown

// ... other methods not shown

}



AP Computer Science: 2006–2007 Workshop Materials 53

Special Focus: Using the 
Java Collections Hierarchy

For example, assume that a Schedules object has been initialized with the following:

(“George”, “Computer Science”) 

(“George”, “Math”)

(“Smith”, “Math”)

(“Thompson”, “Computer Science”) 

(“Thompson”, “English”)

The following table represents the entries in theSchedules:

Key   Value
George  [Computer Science, Math]

Smith  [Math]

Thompson [Computer Science, English]

a. Write the States method addClassToSchedule, which is described as follows. 
 Method addClassToSchedule takes one parameter, a StudentInfo object,  
 and updates theSchedules to include the information encapsulated in the  
 StudentInfo object. 

 Complete the method addClassToSchedule below:

 // postcondition: Information from theStudent

 // has been added to theSchedules

 public void addClassToSchedule(StudentInfo theClass)

 {

b.  Write the method printSchedule, which is described as follows. Method  
 printSchedule takes a String representing a name of a student. It prints the name  
 of the student and a list of the classes he or she is taking. The output should not  
 include [], and the classes should each be separated by a blank space. 

 Complete the method printSchedule below. A solution that creates an unnecessary  
 instance of any Collection class will not receive full credit.

 public void printSchedule(String studentName)

 {



AP Computer Science: 2006–2007 Workshop Materials54

Special Focus: Using the 
Java Collections Hierarchy

c.  Write the method printRoster, which is described as follows. Method printRoster 
 outputs each course followed by the students enrolled in each course. Use the helper  
 method courseListing() to retrieve a Set of all courses. Example output for a call  
 to printRoster could be:

 Course: Computer Science

 Students: George Thompson

 Course: Math

 Students: George Smith

 Course: English

 Students: Thompson

 public void printRoster()

 {



AP Computer Science: 2006–2007 Workshop Materials 55

Special Focus: Using the 
Java Collections Hierarchy

StudentInfo (Java)

/*public interface StudentInfo

{

String name();

String course();

} */

public class StudentInfo

{

 private String name;

 private String course;

 

 public StudentInfo(String n, String c)

 {

 

  name = n;

  course = c;

 }

 public String name()

 {

  return name;

 }

 

 public String course()

 {

  return course;

 }

}



AP Computer Science: 2006–2007 Workshop Materials56

Special Focus: Using the 
Java Collections Hierarchy

Schedules (Java)

import java.util.*;

public class Schedules

{

 private Map theSchedules;

 public Schedules() 

 { 

  theSchedules = new TreeMap(); 

 }

 // postcondition: Information from theStudent

 // has been added to theSchedules

 public void addClassToSchedule(StudentInfo theClass)

 {

  Set students;

  if(theSchedules.containsKey(theClass.name()))

    students =(Set) theSchedules.get(theClass.name());

  else

  {

   students = new HashSet();

   theSchedules.put(theClass.name(),students);

  }

  students.add(theClass.course());

 }

 public void printSchedule(String studentName)

 { 

  Set s = (Set) theSchedules.get(studentName);

  System.out.print(studentName + “: “);

  Iterator it = s.iterator();

  while(it.hasNext())

  {

   System.out.print(“\t” + it.next());

  }

  System.out.println();

 }



AP Computer Science: 2006–2007 Workshop Materials 57

Special Focus: Using the 
Java Collections Hierarchy

 public void printRoster()

 { 

  Set classes = courseListing();

  Iterator it = classes.iterator();

  

  while(it.hasNext())

  {

   String course = (String)it.next();

   System.out.println(“Course: “ + course);

   Set students = theSchedules.keySet();

   Iterator it2 = students.iterator();

   

   System.out.print(“Students: “);

   while(it2.hasNext())

   {

    String stuName = (String)it2.next();

    Set s = (Set)theSchedules.get(stuName);

    if(s.contains(course))

     System.out.print(stuName + “  “);

   }

   System.out.println();

   System.out.println();

  }  

 }

 private Set courseListing()

 {

  Set s = new TreeSet();

  Set students = theSchedules.keySet();

  Iterator it = students.iterator();

   

  while(it.hasNext())

   {

    String stuName = (String)it.next();

    s.addAll((Set)theSchedules.get(stuName));

    

   }

  



AP Computer Science: 2006–2007 Workshop Materials58

Special Focus: Using the 
Java Collections Hierarchy

  return s;

 }

 

 public static void main(String[] args)

 {

  System.out.println();

  Schedules stuSched = new Schedules();

  stuSched.addClassToSchedule(new StudentInfo(“George”,”CS”));

  stuSched.addClassToSchedule(new StudentInfo(“Scearce”,”Math”))

;

  stuSched.addClassToSchedule(new StudentInfo(“George”, 

“Math”));

  stuSched.printSchedule(“George”);

  

  System.out.println(“\n\n\n==============Rosters===============

”);

  stuSched.printRoster();

 

 

 

 }

}



AP Computer Science: 2006–2007 Workshop Materials 59

Special Focus: Using the 
Java Collections Hierarchy

Collections API Activity
Cody Henrichsen
Granger High School
West Valley City, Utah

API (Application Programming Interface) Worksheet

The purpose of this worksheet is to familiarize you with the various aspects of the Java 
API. The API contains tons of explanations of interfaces, classes and methods, and 
implementation details. Though most of these details are not tested on the AP Exam, 
navigating the API is an important skill in programming. You should use the Java API in 
answering these questions.

ArrayLists

1. When an ArrayList is constructed, what is its initial capacity?

2. How many constructors does an ArrayList have?

3. From where is the ArrayList method iterator inherited?
 
4. What is the Big-Oh running efficiency of adding an item to the beginning of an   
 ArrayList? Explain.

5. What is the Big-Oh running efficiency of adding an item to the end of an    
 ArrayList? Explain.
 
6. What happens when you attempt to add items beyond the current capacity of 
 the ArrayList?
  
7. What is the result of calling the get method in an ArrayList with an argument that  
 is not in the range of existing elements?
 
8. When does the hasNext method of an iterator return false?
 
9. Give an example that would cause a NoSuchElementException when using an iterator  
 with an ArrayList? 
  

10. What is the difference between an Iterator and a ListIterator?



AP Computer Science: 2006–2007 Workshop Materials60

Special Focus: Using the 
Java Collections Hierarchy

LinkedLists

11. When must a LinkedList be externally synchronized?

12. What method returns an in-order array of all the elements in a LinkedList?

13. When is –1 returned from the method lastIndexOf(Object o)?

14. What type of value is returned when using removeFirst()?

15. What is the difference between the LinkedList methods getLast()  
 and removeLast()?

Sets 
16. What is the purpose of a hashCode method and from where is it inherited?

17. What should be confirmed before a HashSet is used with objects of 
 user-defined classes?

18. What should be confirmed before a TreeSet is used with objects of 
  user-defined classes?

19. In what order are elements returned with an iterator in a HashSet?

20. What is the Big-Oh efficiency for the remove() method of a HashSet? Explain why  
 this is the case.

21. What is one major difference between the add(Object obj) method in ArrayList  
 and HashSet?
 
22. What is the difference between a TreeSet and a HashSet?
 
23. In what order are elements returned with an iterator in a TreeSet?

24. What is the Big-Oh efficiency of accessing the first element in a TreeSet?
 
25. What is the default size of a HashSet or a TreeSet?
 
26. How do you construct a HashSet of default size?



AP Computer Science: 2006–2007 Workshop Materials 61

Special Focus: Using the 
Java Collections Hierarchy

27. How do you construct a TreeSet of default size?

28. Are there any restrictions in calling a set’s iterator’s remove() method? 

Maps

29. How many constructors does a Map have?
 
30. In what order does an iterator traverse the elements of a HashMap?
 
31. In what order does an iterator traverse the elements of a TreeMap?

32. List a few possible applications that might choose to use a class that implements the  
 Map interface.

33. What happens when the Map method get is called with a parameter key that is not  
 found in the Map?

34. What is the difference in running time between the TreeMap’s get method and the  
 HashMap’s get method?

 
Collections

35. The Collections class consists entirely of static methods. What does this mean?

36. Consider the following statement:
    Collections.binarySearch(someCollection, key);
 What must be true of the parameter someCollection?

37. Is there a Collections method that would randomly order the elements of an   
 ArrayList? If so, give an example of a call to this method.

38. The Collections class defines two sort methods. Explain the difference between   
 these two methods.

39. What is the Big-Oh efficiency of these sort methods?
 
40. How is the swap method of the Collections class called? Explain the result.



AP Computer Science: 2006–2007 Workshop Materials62

Special Focus: Using the 
Java Collections Hierarchy

API (Application Programming Interface) Worksheet  
with Answers

The purpose of this worksheet is to familiarize you with the various aspects of the Java 
API. The API contains tons of explanations of interfaces, classes and methods, and 
implementation details. Though most of these details are not tested on the AP Exam, 
navigating the API is an important skill in programming. You should use the Java API in 
answering these questions.

ArrayLists

1. When an ArrayList is constructed, what is its initial capacity?
 10

2. How many constructors does an ArrayList have?
 3

3. From where is the ArrayList method iterator inherited?
 ArrayList is a subclass of AbstractList, which implements the List interface.   
 List contains the method iterator, which is implemented by AbstractList and  
 then inherited by ArrayList. 
 
4. What is the Big-Oh running efficiency of adding an item to the beginning of an  
 ArrayList? Explain.
 O(n), because of the shifting that takes place.

5. What is the Big-Oh running efficiency of adding an item to the end of an   
 ArrayList? Explain.
  O(1), because no shifting is necessary.

6. What happens when you attempt to add items beyond the current capacity of 
 the ArrayList?
 As elements are added to an ArrayList, its capacity grows automatically. The details  
 of the growth policy are not specified beyond the fact that adding an element has   
 constant amortized time cost.
 



AP Computer Science: 2006–2007 Workshop Materials 63

Special Focus: Using the 
Java Collections Hierarchy

7. What is the result of calling the get method in an ArrayList with an argument   
 that is not in the range of existing elements?
 IndexOutOfBoundsException

 
8. When does the hasNext method of an iterator return false?
 It returns false in the case where calling next() would result in an exception 
 being thrown (if there is not an element for the iterator to return when next()
 is called). 

9. Give an example that would cause a NoSuchElementException when using an   
 iterator with an ArrayList? 
 Calling next when there are no more elements in the list:
 ArrayList a = new ArrayList()

 a.add(“one”);

 Iterator itr = a.iterator();

 Object o = itr.next();

 o = itr.next(); ←  Exception thrown

10. What is the difference between an Iterator and a ListIterator?
  An Iterator allows forward traversal through the list and removal of    
 elements. A ListIterator allows for traversal in both directions and addition,   
 modification, and removal of elements. 

LinkedLists

11. When must a LinkedList be externally synchronized?
 A linked list needs to be synchronized when a thread-based structure modification  
 occurs, this would be an addition or deletion from the linked list.

12. What method returns an in-order array of all the elements in a LinkedList?
 The toArray() method returns the array of all elements within the LinkedList.

13. When is –1 returned from the method lastIndexOf(Object o)?
 The value of –1 is returned only if the object o in question is not located within 
 the LinkedList.

14. What type of value is returned when using removeFirst()?
 The return value is of type Object.



AP Computer Science: 2006–2007 Workshop Materials64

Special Focus: Using the 
Java Collections Hierarchy

15. What is the difference between the LinkedList methods getLast() 
 and removeLast()?
 The difference between removeLast() and getLast() is that the removeLast()  
 method returns and deletes the last item stored in the LinkedList; getLast()  
 returns the last item but does not alter the list contents.

Sets 
16. What is the purpose of a hashCode method and from where is it inherited?
 The hashCode method is inherited from Object. It is the specific hashCode value   
 for the Object within the collection. It allows for a more efficient search because of  
 the efficiency of the hash search functions.
 
17. What should be confirmed before a HashSet is used with objects of 
 user-defined classes?
 hashCode should be defined in the user-defined class.

18. What should be confirmed before a TreeSet is used with objects of 
 user-defined classes?
 compareTo should be defined in the user-defined class.

19. In what order are elements returned with an iterator in a HashSet?
 No particular order.

20. What is the Big-Oh efficiency for the remove() method of a HashSet? Explain   
 why this is the case.
 O(1). All simple algorithms based on hashing have a constant order of efficiency.

21. What is one major difference between the add(Object obj) method in    
 ArrayList and HashSet?
 HashSet will not add duplicate elements.

22. What is the difference between a TreeSet and a HashSet?
 TreeSet is ordered; HashSet is not.

23. In what order are elements returned with an iterator in a TreeSet?
 The elements are returned in ascending order, as determined by the compareTo   
 method within the class.



AP Computer Science: 2006–2007 Workshop Materials 65

Special Focus: Using the 
Java Collections Hierarchy

24. What is the Big-Oh efficiency of accessing the first element in a TreeSet?
  O(log n) 

25. What is the default size of a HashSet or a TreeSet?
  0

26. How do you construct a HashSet of default size?
 HashSet h = new HashSet();

27. How do you construct a TreeSet of default size?
 TreeSet t = new TreeSet();

28. Are there any restrictions in calling a set’s iterator’s remove()method? 
 The method can be called only once per call to next.

Maps

29. How many constructors does a Map have?
  None. Map is an interface.

30. In what order does an iterator traverse the elements of a HashMap?
 No particular order.

31. In what order does an iterator traverse the elements of a TreeMap?
 The elements are returned in ascending order, as determined by the compareTo  
 method defined within the class of the key.

32. List a few possible applications that might choose to use a class that implements  
 the Map interface.
 Various answers; for example, people mapped to phone numbers.

33. What happens when the Map method get is called with a parameter key that is not  
 found in the Map?
 null is returned.

34. What is the difference in running time between the TreeMap’s get method and the  
 HashMap’s get method?
 TreeMap = O(log n)

 HashMap = O(1)



AP Computer Science: 2006–2007 Workshop Materials66

Special Focus: Using the 
Java Collections Hierarchy

Collections

35. The Collections class consists entirely of static methods. What does 
 this mean?
 No object of type Collections is needed to use the methods. 

36. Consider the following statement:
  Collections.binarySearch(someCollection, key);

 What must be true of the parameter someCollection?
 someCollection must implement the List interface.

37. Is there a Collections method that would randomly order the elements of an   
 ArrayList? If so, give an example of a call to this method.
 Collections.shuffle(arrList);

38. The Collections class defines two sort methods. Explain the difference between  
 these two methods.
 One has one parameter and will sort the list using compareTo. The other passes a   
 Comparator as a second parameter and will use the Comparator to sort the list.

39. What is the Big-Oh efficiency of these sort methods?
  O(log n)

40. How is the swap method of the Collections class called? Explain the result.
 swap has three parameters: the list and two indices. It swaps the elements in the   
 indices specified in the list. The list is altered.



AP Computer Science: 2006–2007 Workshop Materials 67

Special Focus: Using the 
Java Collections Hierarchy

Teaching with Tiger: Using Java 5.0 Features in  
AP Computer Science Courses
Cay S. Horstmann
Department of Mathematics and Computer Science
San Jose State University
San Jose, California

This article reviews the features that were added to the Java language in the 5.0 release 
(aka 1.5, aka Tiger) and gives suggestions on how to use them in an AP Computer 
Science course. The focus of this article is on teaching an introductory course, not on the 
AP CS Exam. As this article is written, the Development Committee has not yet decided 
which new features (if any) will be included in the AP CS Java subset. 

Generic Collections

Probably the most useful new feature in Java 5.0 is the ability to specify element types of 
collections. You can now form an 
ArrayList<Fish> fishList;

or a 
Map<Location, Fish> fishLocator;

The benefit is clear: there is no more guesswork about what kind of Object is in a 
given collection. 

Generic collections are easy to use. All collection classes and interfaces in the standard 
Java library support type parameters. Simply specify the element type for collections or 
the key and value types for maps, enclosed in angle brackets. 

Because the compiler keeps track of the element types, casts are no longer required:

Fish firstFish = fishList.get(0); // no (Fish) cast needed

Generic collections cannot hold primitive types. For example, there is no 
ArrayList<int>. The remedy is to use wrapper types such as ArrayList<Integer>. 
The new autoboxing feature, discussed later in this article, makes it easy to convert 
between primitive types and wrapper classes.

You are not forced to use generic collections—if you omit the type parameters, you 
simply get “raw” collections that hold elements of type Object. You can even mix generic 
and raw collections in the same program, but then you may get unsightly compiler 



AP Computer Science: 2006–2007 Workshop Materials68

Special Focus: Using the 
Java Collections Hierarchy

warnings when the compiler loses track of type information.
Of course, C++ veterans will recognize generic types as the equivalent of templates 
such as vector<Fish>. As with C++ templates, Java generic types are easy to use if you 
stick to the basics and just use classes that other programmers have defined, such as 
collections. Defining your own generic types is considerably more complex, as you will 
see later in this article. 

I recommend that you teach generic collections instead of the raw collections. The 
resulting code is clearer to read, and you don’t need casts. In particular, you can use 
ArrayList<T> as early as you like, without having to mention the Object class 
or inheritance.

It is likely that the AP CS Exam will use generic collections. Students should at least be 
able to read code that uses generic collections, and they should understand that no cast is 
required when retrieving elements from generic collections.

The “For Each” Loop

The “for each” loop (aka “enhanced for loop”) is a new looping construct that iterates 
over all elements in an array or a collection. For example:

Fish[] fishes = . . .;

for (Fish f : fishes)

    f.act();

The loop iterates over the elements of fishes. In each iteration, the variable f is set 
to the next element, and the loop body is executed. 

The benefit is simpler code. The “for each” loop is much easier to read than a 
traditional loop:

for (int i = 0; i < fishes.length; i++)

{

    Fish f = fishes[i]; 

    f.act();

}

There is also less room for indexing errors.



AP Computer Science: 2006–2007 Workshop Materials 69

Special Focus: Using the 
Java Collections Hierarchy

You can use the same loop to visit each element in a collection:

ArrayList<Fish> fishList = . . .;

for (Fish f : fishList)

    f.act();

Technically, this loop is a shortcut for the following traditional loop:

for (Iterator<Fish> iter = fishList.iterator(); iter.hasNext(); )

{

    Fish f = f.next();

    f.act();

}

In fact, you can use the “for each” loop to iterate through objects of any class that 
implements the Iterable interface. That interface has a single method, iterator. 
In Java 5.0, all collection classes implement the Iterable interface. Therefore, you 
can use the “for each” loop to iterate through linked lists and sets, not just array lists. 

Set<Fish> fishSet = . . .;

for (Fish f : fishSet)

    f.act();

 

To visit all entries in a map, you iterate through the key set, like this: 
 

Map<Location, Fish> fishLocator = . . .;

for (Location loc : fishLocator.keySet())

{

    Fish f = fishLocator.get(loc);

    . . .

}



AP Computer Science: 2006–2007 Workshop Materials70

Special Focus: Using the 
Java Collections Hierarchy

Of course, there are many loops that cannot be expressed as a “for each” loop. For 
example, if you want to skip the first or last element, or if you need the index variable in 
the loop body, or if you want to remove elements during the iteration, then you still need 
a traditional loop. 

Should you teach the “for each” loop, or should you simply stick with traditional loops? 
In my opinion, it doesn’t much matter either way. However, most programmers find the 
“for each” loop seductive, and you too may fall under its spell.

It is possible that future versions of the AP CS Exam will use the “for each” loop to 
simplify code examples, but no final decision has been made. 

Autoboxing

Autoboxing refers to the automatic conversion between primitive types and their 
corresponding wrapper types. (Autowrapping would have been a better term, but the Java 
designers took this feature, including the name, from C#.) For example:

Integer integerObj = 1729; // automatically calls the constructor new 

Integer(1729)

The converse (sometimes called auto-unboxing) is also automatic:

int n = integerObj; // automatically calls 

integerObj.intValue()

Automatic boxing and unboxing also happens in arithmetic expressions that involve 
wrapper objects:

integerObj--; // same as integerObj = new Integer(integerObj.intValue() 

- 1);

Autoboxing is useful when primitive type values are stored in collections. For example:

ArrayList<Integer> luckyNumbers = new ArrayList<Integer>();

luckyNumbers.add(1729); // same as luckyNumbers.add(new Integer(1729));

int n = luckyNumbers.get(0); 



AP Computer Science: 2006–2007 Workshop Materials 71

Special Focus: Using the 
Java Collections Hierarchy

For professional programming, the opportunity for autoboxing does not occur very often. 
However, when teaching introductory computer science courses, collections that hold 
numbers are commonly used as examples, and autoboxing is convenient.

Note that it is not a good idea to replace all primitive types with wrappers. Even though 
the resulting code will compile and run in most cases, the code is significantly less 
efficient and does not resemble “real world” code.

The downside of autoboxing is that the exact rules are rather complex. For example, 
consider the comparison:
integerObject == n

Does this code unbox integerObject and compare two integer values, or does it box n 
and compare two object references? As it turns out, it does the former. But you probably 
don’t want to spend valuable class time discussing syntax trivia. If you decide to cover 
autoboxing in your class, it would seem best to stick to simple situations—in particular, 
getting and setting elements in wrapper collections. 

It is possible that future versions of the AP CS Exam will use autoboxing to simplify code 
examples. But there would be no “trick questions” about syntax trivia, and autoboxing 
would only be used in simple and unambiguous situations. 

Implementing Generic Types

AP Computer Science students learn to implement linked lists, hash tables, and binary 
trees. It seems reasonable to expect students to implement generic classes that exactly 
mimic the behavior of the standard collection classes. 

In simple cases, this is indeed easy in Java 5.0. For example, a generic list node class can 
be defined like this:

public class ListNode<E>

{

    public ListNode(E value, ListNode next) { . . . }

    public E getValue() { . . . }

    public ListNode getNext() { . . . }

    private E value;

    private ListNode next;

}



AP Computer Science: 2006–2007 Workshop Materials72

Special Focus: Using the 
Java Collections Hierarchy

A ListNode<E> holds a value of type E. A linked list with element type E is composed of 
ListNode<E> objects:

public class LinkedListImpl<E>

{

    . . .

    private ListNode<E> link;

}

However, with other data structures, the situation is more complex. Consider a binary 
search tree. The tree node values should implement the Comparable interface so that we 
can compare them. The syntax for expressing this constraint is: 

public class TreeNode<E extends Comparable<E>>

{

    . . .

}

Note that Comparable is a generic interface in Java 5.0, defined like this:

public interface Comparable<T>

{

    int compareTo(T other);

}

The type parameter specifies the type of the other parameter of the compareTo method. 
This is an improvement over the “raw” Comparable interface that required a cast in 
implementations of compareTo. For example:

public class Person implements Comparable<Person>

{

    public int compareTo(Person other) 

    { 

         return id - other.id; 

             // no need to cast other

    }

    . . .

    private int id;

}



AP Computer Science: 2006–2007 Workshop Materials 73

Special Focus: Using the 
Java Collections Hierarchy

Because Person implements the Comparable interface, we can form a 
TreeNode<Person>. But if we tried to form a TreeNode<Rectangle>,  
then the compiler would complain that Rectangle does not implement 
Comparable<Rectangle>. That is good.

But now something very unpleasant happens. Suppose we want to form a subclass of 
Person, say Student:

public class Student extends Person { . . . }

Can we form a TreeNode<Student>? No—Student doesn’t implement 
Comparable<Student>, only Comparable<Person>. This is an unreasonable restriction 
since we can obviously compare two Student objects. To overcome this restriction, you 
have to relax the constraint on the generic type, like this:

public class TreeNode<E extends Comparable<? super E>>

{

    . . ..

}

This means “E is a type that implements Comparable<?>, where ? is an anonymous type 
that is a supertype of E.” It may be possible to explain this to a beginning student, but it 
is far removed from the material that we want to study, namely the implementation of 
binary search trees.

There are other pitfalls. Suppose we want to implement a dynamic array:

public class ArrayListImpl<E>

{

    public ArrayListImpl(int capacity) 

    {

         elements = new E[capacity]; // ERROR 

    } 

    private E[] elements;

}

Unfortunately, it is not legal to construct an array of a generic type. This restriction is due 
to the implementation of generics through “type erasure,” something that you probably 



AP Computer Science: 2006–2007 Workshop Materials74

Special Focus: Using the 
Java Collections Hierarchy

don’t want to explain to your students. There are workarounds (after all, the Java library 
designers managed to implement ArrayList<E>), but they are not student friendly. 

I think that data structures are best covered in the traditional way, using collections of 
type Object or the “raw” Comparable type without a type parameter. However, it is 
not clear how this issue will be tackled in college-level courses, and the Development 
Committee is tracking this issue.

Conclusion

The Java 5.0 release has more new language features than any Java release since 1.0. Many 
of these features are of marginal interest to beginning students. However, several features 
are compelling because they make programs easier to read, in particular:
• Generic collections
• The “for each” loop
• Autoboxing

Many college-level texts have embraced these features, and a future version of the AP CS 
Java subset may include some or all of them. Finally, Java 5.0 provides convenient classes 
for console input and formatted output.



AP Computer Science: 2006–2007 Workshop Materials 75

Special Focus: Using the 
Java Collections Hierarchy

Web Resources for Collection Classes
Debbie Carter
Lancaster Country Day School
Lancaster, Pennsylvania

Teaching Gems

The Card Game Assignment
(Nifty Assignments 2004)
John K. Estell 
A GUI-based assignment that uses Lists, distributable card images (made available 
under the GNU General Public License), and step-by-step instructions for developing the 
classes. (You fill in the details of the card game that you choose; these resources can be 
used to develop any card game that uses standard playing cards.)
http://nifty.stanford.edu/2004/EstellCardGame

Computer Science Labs (Revised)
Roger Frank
A diverse group of student assignments, many of which deal specifically with collection 
classes. (With choices like “Fish Tree,” “Tropical Fruits,” and “Superstition,” you’re certain 
to find something fun for your students.)
www.rfrank.net/cslabs/cslabs.htm

LJV: Lightweight Java Visualizer
John Hamer, Department of Computer Science, University of Auckland, New Zealand 
A tool for visualizing Java data structures, LJV (available under the GNU General Public 
License) uses Graphviz (open-source licensed software from AT&T Labs). The Web site 
shows sample diagrams of an ArrayList and a HashMap.
www.cs.auckland.ac.nz/~j-hamer/LJV/TeacherIntro.html 

Reference Materials

Abstract Data Types in Java
(Portion of “Lecture Notes for COMPSCI.220FT”)
Georgy Gimel’farb
Section 2.2, “ADTs and Java Classes,” discusses the Java 1.2 Collections framework. 
Page 43 has a detailed diagram of the Collections framework hierarchy. 
www.citr.auckland.ac.nz/~georgy/teaching/2001/220FT/pdf-files/220cha02.pdf 



AP Computer Science: 2006–2007 Workshop Materials76

Special Focus: Using the 
Java Collections Hierarchy

Introductory Java Programming Tutorial
Richard G. Baldwin
Links to individual lessons and articles on various topics. Of special note are the “Data 
Structures in Java” tutorials, parts 1 to 8. From a review by Leigh Ann Sudol in AP 
Central’s Teachers’ Resources Area:

 
The tutorials on data structures take a reusability approach to the collection 
classes they describe. The author emphasizes reuse versus reinvention. 
Since many of the methods that must normally be created by students 
studying different data structures are already included in the collection 
classes (such as add() to a Tree), he stresses that curriculums should shift 
their focus to application of these data structures, not reimplementation 
of them. The differences between the collection classes are emphasized by 
consistent coding (very similar programs, just a change in data structure) 
with the same test data. The tutorials analyze and explain the output in 
terms of how the chosen data structure affects what the data does.

www.dickbaldwin.com/tocint.htm

Collection Classes in Java: Part 2
Department of Computer Science, University of Waikato 
A slide lecture that covers the following topics: containers; Collections and Maps; 
container taxonomy diagrams (showing the relationships between the various interfaces 
and classes); Iterators; functionality of List, Set, and Map; and hashing and hash 
codes. Includes an example of a concordance using a HashMap. (The PDF file has four 
slides per page, so it’s not appropriate for classroom projection, but it’s a great reference.)
www.cs.waikato.ac.nz/Teaching/COMP209B/Collections2.pdf 

Java Tutorial: “Trail: Collections”
Joshua Bloch 
Seven lessons on the Collections framework.
http://java.sun.com/docs/books/tutorial/collections/index.html

Sun Developer Network: Technical Articles and Tips
“Choosing a Collections Framework Implementation” (February 20, 2003)
John Zukowski
http://java.sun.com/developer/JDCTechTips/2003/tt0220.html#1



AP Computer Science: 2006–2007 Workshop Materials 77

Special Focus: Using the 
Java Collections Hierarchy

“Using HashSet, LinkedHashSet, and TreeSet” (November 5, 2002)
Glen McCluskey
http://java.sun.com/developer/JDCTechTips/2002/tt1105.html#1

The Collections Framework
Sun Microsystems
Includes JavaTM 2 SDK, standard edition documentation (version 1.4.2).
http://java.sun.com/j2se/1.4.2/docs/guide/collections

Planet Java Tutorial: “The Collection API”
John Hunt 
Explains each interface and class, and includes sections on Iterators and choosing 
a collection class.
www.jaydeetechnology.co.uk/planetjava/tutorials/language/Collections.PDF

Collection Class Excerpts from Online Textbooks

Note: Free, downloadable source code is available for all texts in this list.

Introduction to Programming Using Java, version 4.1, June 2004
David J. Eck
http://math.hws.edu/javanotes/index.html
• Section 8.3: “Dynamic Arrays, ArrayLists, and Vectors”
 ArrayLists

 http://math.hws.edu/javanotes/c8/s3.html
• Section 12.2: “List and Set Classes”
 List and Set interfaces, Iterators, ArrayList, LinkedList, and
 TreeSet. (HashSet,briefly)
 http://math.hws.edu/javanotes/c12/s2.html
• Section 12.3: “Map Classes”
 Map interface, hash tables, TreeMap, and HashMap
 http://math.hws.edu/javanotes/c12/s3.html
• Section 12.4: “Programming with Collection Classes” 
 http://math.hws.edu/javanotes/c12/s4.html



AP Computer Science: 2006–2007 Workshop Materials78

Special Focus: Using the 
Java Collections Hierarchy

Thinking in Java, 3rd ed.
(Online or downloadable version)
Bruce Eckel
www.mindview.net/Books/TIJ/
• Chapter 11: “Collections of Objects” 
 Look for the section called “Introduction to Containers.”

Java Au Naturel, 4th ed., May 2004
William C. Jones, Jr., Central Connecticut State University 
www.cs.ccsu.edu/~jones/book.htm 
This text’s copyrighted material is available free of charge for teaching, provided you fill out 
and submit a five-minute questionnaire. PDF files, source code, and syllabi are provided.
• Chapter 7, section 7.11: “Implementing Queue as a Subclass of ArrayList”
 www.cs.ccsu.edu/~jones/chap07.pdf
• Chapter 15: “Collections and Linked Lists”
 Iterator, ListIterator, LinkedList
 www.cs.ccsu.edu/~jones/chap15.pdf
• Chapter 16: “Maps and Linked Lists”
 Map interface, HashMap, and TreeMap
 www.cs.ccsu.edu/~jones/chap16.pdf



AP Computer Science: 2006–2007 Workshop Materials 79

Special Focus: Using the 
Java Collections Hierarchy

Contributors
Information current as of original publish date of September 2005. 

About the Editor

Fran Trees taught AP Computer Science from 1983 to 2001 in Westfield, New Jersey. 
She presently teaches CS1/CS2 at Drew University in Madison, New Jersey. Fran is a 
College Board consultant for AP CS, an Exam Leader, and AP Central’s content adviser 
for computer science.

Debbie Carter is a computer coordinator at Lancaster Country Day School in Lancaster, 
Pennsylvania, where she teaches computer science and assists faculty with technology 
integration. She is a Question Leader for the AP Exam and a College Board consultant.

Christian Day has been teaching computer science at Emma Willard School since 2001 
and was an instructor in computer science at Phillips Exeter Academy from 1996 to 2001. 
Christian has been an AP Exam Reader since 2001.

Bekki George teaches computer science and math at James E. Taylor High School in 
Katy, Texas. She also coaches the Academic Decathlon team at Taylor. Bekki is a College 
Board consultant for AP Computer Science and a Reader for the AP CS Exam.

Cody Henrichsen teaches computer science at Granger High School in West Valley City, 
Utah, and is a Reader for the AP Exam. Cody also teaches American history and coaches 
the debate team. 

Cay S. Horstmann is a professor of computer science in the Department of Mathematics 
and Computer Science at San Jose State University, California, and author of many 
popular computer science text books. Cay is presently a member of the AP Computer 
Science Development Committee.

Pat Phillips taught computer science at Craig High School in Janesville, Wisconsin, for 
25 years and served as instructional manager. Pat also works with the Microsoft Faculty 
Advisory Board and advises the Dreams Club at Craig, a club for girls interested in 
math, science, and technology.

Leigh Ann Sudol is a mathematics and computer science teacher at Fox Lane High 
School in Bedford, New York. Leigh Ann is also a College Board consultant and 
coauthor of Java Software Structures for AP® Computer Science (for the AB Exam). 



AP Computer Science: 2006–2007 Workshop Materials80

Contact Us

College Board Regional Offices

National Office
Advanced Placement Program
45 Columbus Avenue
New York, NY 10023-6992
212 713-8066
Email: ap@collegeboard.org

AP Services
P.O. Box 6671
Princeton, NJ 08541-6671
609 771-7300
877 274-6474 (toll free in the U.S. and Canada)
Email: apexams@info.collegeboard.org

AP Canada Office
1708 Dolphin Avenue, Suite 406
Kelowna, BC, Canada V1Y 9S4
250 861-9050
800 667-4548 (toll free in Canada only)
Email: gewonus@ap.ca

AP International Office
Serving all countries outside the U.S. and Canada
45 Columbus Avenue
New York, NY 10023-6992
212 373-8738
Email: apintl@collegeboard.org

Middle States Regional Office
Serving Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania, 
Puerto Rico, and the U.S. Virgin Islands
2 Bala Plaza, Suite 900
Bala Cynwyd, PA 19004-1501
866 392-3019
Email: msro@collegeboard.org 



AP Computer Science: 2006–2007 Workshop Materials 81

Contact Us

Midwestern Regional Office
Serving Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, 
North Dakota, Ohio, South Dakota, West Virginia, and Wisconsin
1560 Sherman Avenue, Suite 1001
Evanston, IL 60201-4805
866 392-4086
Email: mro@collegeboard.org

New England Regional Office
Serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont
470 Totten Pond Road
Waltham, MA 02451-1982
866 392-4089
Email: nero@collegeboard.org

Southern Regional Office
Serving Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, 
South Carolina, Tennessee, and Virginia
3700 Crestwood Parkway NW, Suite 700
Duluth, GA 30096-7155
866 392-4088
Email: sro@collegeboard.org

Southwestern Regional Office
Serving Arkansas, New Mexico, Oklahoma, and Texas
4330 South MoPac Expressway, Suite 200
Austin, TX 78735-6735
866 392-3017
Email: swro@collegeboard.org

Western Regional Office
Serving Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, Oregon, 
Utah, Washington, and Wyoming
2099 Gateway Place, Suite 550
San Jose, CA 95110-1051
866 392-4078
Email: wro@collegeboard.org


	Cover
	Table of Contents
	Introduction
	Array Lists
	Collections and ObjectDraw: Using a Collection Class with Iteration in a Graphical Program
	Comparing Memory Representations Between ArrayList and LinkedList: Using the BlueJ Inspector to See a Representation of a Data Structure
	Implementing the Java Marine Biology Case Study Using Maps
	Sets and Maps: An Excursion
	Collections API Activity
	API (Application Programming Interface) Worksheet with Answers
	Teaching with Tiger: Using Java 5.0 Features in AP Computer Science Courses
	Web Resources for Collection Classes
	Contributors
	Contact Us

